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ABSTRACT: Although the AdS5x.S® worldsheet action is not quadratic, some features of the
pure spinor formalism are simpler in an AdSs x S® background than in a flat background.
The BRST operator acts geometrically, the left and right-moving pure spinor ghosts can
be treated as complex conjugates, the zero mode measure factor is trivial, and the b ghost
does not require non-minimal fields.

Furthermore, a topological version of the AdSs x S° action with the same worldsheet
variables and BRST operator can be constructed by gauge-fixing a G/G principal chiral
model where G = PSU(2,2|4). This topological model is argued to describe the zero
radius limit that is dual to free NV = 4 super-Yang-Mills and can also be interpreted as an
“unbroken phase” of superstring theory.
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1 Introduction

Up to now, the only superstring formalism suitable for covariantly quantizing the AdS5 x
S5 background is the pure spinor formalism [1]. Because of the Ramond-Ramond flux,
the Ramond-Neveu-Schwarz formalism cannot describe this background. Although the
covariant Green-Schwarz formalism can classically describe the AdSs x S° background,
this formalism has only been quantized in light-cone gauge by expanding around classical
solutions which break the target-space PSU(2,2|4) invariance. It should be noted that for
computing the physical spectrum, the light-cone Green-Schwarz formalism is probably the
most convenient since it includes only physical degrees of freedom and does not require
ghosts. However, for computing scattering amplitudes or for describing the spectrum in a
PSU(2, 2[4)-invariant manner, the pure spinor formalism is expected to be more convenient
since it manifestly preserves all symmetries.

In a flat target-space background, the worldsheet action in the pure spinor formalism
is quadratic and it is easy to compute scattering amplitudes using the free-field OPE’s of



the worldsheet fields. However, in an AdSs x S° background, the worldsheet action is [2]
1 —b 3 _F—a 1—[237
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where J4 = (¢g7'9¢)4 and T = (g~ 10g)* are the Metsaev-Tseytlin left-invariant cur-
rents [3], A = (a,q, @, [ab]) are the PSU(2,2|4) Lie-algebra indices, g takes values in the
% coset, (A% w,) and (/)\\a,ﬁ}a) are the left and right-moving pure spinor vari-
ables, and (nab,naa,n[ab} cq) are the nonvanishing components of the PSU(2, 2(4) metric. The
global PSU(2,2]4) isometries act on g by left multiplication as g = ¥g, and these global

isometries commute with the BRST transformations which act by right multiplication as
Qg =g (\“T, + \oT5) (1.2)

where T, and T; are the fermionic generators of PSU(2,2|4). Since the J# currents
are not holomorphic, it is difficult to compute OPE’s and scattering amplitudes in an
AdS5 x S® background.

Nevertheless, it will be shown in the first half of this paper that there are several
features of the pure spinor formalism in an AdSs x S® background which are simpler than
in a flat background. Unlike the worldsheet Lagrangian in a flat background which trans-
forms by a total derivative under d = 10 supersymmetry transformations, the worldsheet
Lagrangian of (1.1) is manifestly PSU(2, 2|4) invariant. As a consequence, the vertex oper-
ator for the zero-momentum dilaton in an AdSs x S background is manifestly PSU(2, 2/4)
invariant and can be expressed as the ghost-number (1,1) operator

VAL = _AeNd (1.3)

where 1,5 = (701234)(1

&- On the other hand, the zero-momentum dilaton vertex operator
in a flat background is

Vit = (\y"0) Ay 0), (1.4)

which transforms under spacetime supersymmetry into a BRST-trivial operator.

Because (naa)\axa) is in the BRST cohomology in an AdSs x S° background, it is
consistent to impose the constraint that (77)\/):) is non-vanishing and to extend the Hilbert
space to include states which depend on inverse powers of (77)&). Note that in a flat
background, (77)\/)\\) is not in the cohomology and can be written as (77)\/)\\) = Q(naaﬂa/)\\a). So
in a flat background, such an extension of the Hilbert space would trivialize the cohomology
because of the state W = (77)\/)\\)_17763953\\5 satisfying QW = 1, which would imply that
any BRST-closed state V' could be written as V = Q(WV).

After extending the Hilbert space in this manner and interpreting A% and naaxa as
complex conjugates, it is straightforward to define functional integration over the pure
spinor variables. Unlike in a flat background where one needs to introduce additional
“non-minimal” variables to functionally integrate over pure spinors [4] [5], there is no



need to introduce non-minimal variables in an AdSs x S° background. In some sense, the
non-holomorphic structure of the AdSs x S® sigma model automatically regularizes the 0/0
divergences which were regularized in a flat background by the non-minimal variables.

Since there are no non-minimal variables, the zero mode measure factor and the com-
posite b ghost are simpler in an AdS5 x S® background than in a flat background. In a flat
background, the tree-level zero mode measure factor is

~

(f(z,0,),0,))) :/dl%/(d59)a1...a5(d59)al...a5 (1.5)

8 aq a (%) a a3 8 al a aQ 8 623 N
m _~ n Y p Y g q Y r Y s Y Q40
(r3x) (v3x) (7)) omor (i) (v3) (35) 0

f(xa 9’ )‘a é\’ }‘\) |9:§:0

and the b ghost satisfying {Q, b} = T depends in a complicated manner on the non-minimal
variables. In an AdSs x S° background, the tree-level zero mode measure factor is simply

(f(z,0,X,0,\)) :/dwm/dwedw@\sdet(Eﬁ)/d)\dX fz,0,),0,)) (1.6)

where Eﬁ is the target-space supervierbein and [ d\d) is a compact integration over the

projective pure spinors. And the composite b ghost is

b= (77)‘/):)_1 Xa E(%J)aJ“ + %naaNQb(’YabJ)a + iﬁantho‘} (1-7)
where (J%, J, J a) are the left-invariant currents constructed from ¢, and N and Jgn are
the Lorentz and ghost-currents for \¢.

It is instructive to consider the pure spinor formalism for the Ramond-Ramond plane-
wave background [6] where a partial simplification also occurs. In this background, the
operator of (1.3) is replaced with (Ay41234A) which only involves the (74A) and (y4\)
components of the pure spinors. So one still needs to introduce non-minimal variables for
the (y_A) and (y_\) components in order to perform functional integration. This implies
that the tree-level measure factor in the plane-wave background involves integration over 18
6’s, as opposed to the 10 #’s in a flat background or the 32 6’s in an AdS5 x S° background.

In principle, these results could be used to compute AdSs x S° scattering amplitudes
without the regularization complications that plague amplitude computations in a flat
background [4, 5]. Unfortunately, the difficulties with evaluating OPE’s and with con-
structing explicit vertex operators in an AdSs x S° background will probably make it hard
to compute non-trivial scattering amplitudes at finite AdS radius. Nevertheless, it might
eventually be possible to compute amplitudes at infinitesimally small AdS radius and test
the Maldacena conjecture in the perturbative super-Yang-Mills regime.

In order to compute superstring amplitudes in this perturbative super-Yang-Mills
regime, the first step would be construct a closed string theory that describes the zero
radius limit that is dual to free N' = 4 super-Yang-Mills theory [7]. Since super-Yang-Mills
is a field theory, it is natural to try to describe this zero radius limit using a topological



string theory [8]. One recent topological string proposal [9, 10] was constructed from the
% which was related by a field redefinition to the pure spinor
formalism. This topological string theory was later obtained in [11] by gauge-fixing the
G/@ principal chiral model with G = PSU(2,2|4), and similar G/G topological models for

the zero radius limit have been proposed by A. Polyakov [12] and H. Verlinde [13].

fermionic coset

In the second half of this paper, it will be shown that there is an alternative gauge-
fixing of the G/G principal chiral model which produces a topological string theory based
SUR2Y _ ingtead of the fermionic coset caoot22d)
SO(4,1)xSO(5) SO(4,2)xSO(6)
This alternative gauge-fixing is related to an AdSs x S° generalization of the “extended

on the Metsaev-Tseytlin coset

pure spinor” formalism proposed by Aisaka and Kazama [14] and, unlike the BRST trans-
formation for the gauge-fixing to the fermionic coset, the BRST transformation using this
alternative gauge-fixing is the same as in (1.2).

The worldsheet action of this topological string theory is BRST-trivial and is

)\ a /): — —Q A f— —~ -yl 1 ~ -~
Stop =/d22 [(7772) TT 4 10a 1T = w VA + @5 VA® — —1(at][eq) (WY N) (BN |
2(nAX) 4
(1.8)
PSU(2,2/4)
SO(4,1)xSO(5)
coset as before. Note that (1.8) differs from the original AdS5 x S° action of (1.1) through

the ()\O‘,Xa) dependence of the first term and the absence of an 7,5.J 7% term.
To show that this topological string theory is the dual to free N’ = 4 super-Yang-Mills,

where J4 = (¢719¢)? are the same left-invariant currents constructed from a
g g

the first step is to show that the BRST cohomology correctly reproduces the single-trace
gauge-invariant super-Yang-Mills operators at zero ‘t Hooft coupling. Since the topolog-
ical BRST transformations are the same as in the original AdSs x S° model, it is trivial
to show that vertex operators for half-BPS states in the original AdSs x S° sigma model
are also in the BRST cohomology of the topological sigma model. Vertex operators for
non-BPS states can be constructed by acting on half-BPS vertex operators with the o-
dependent transformation
dg(0) = X(o)g(o) (1.9)

where ¥(o) is an arbitrary local PSU(2,2/4) transformation whose o-independent modes
are the global isometries. These transformations commute with the BRST transformations
of (1.2), and when acting on operators of large R-charge, the o-dependent modes of 3
act like the massive string modes in a plane-wave background by inserting “impurities” in
the long operator [15]. Although the o-dependent transformations of (1.9) do not leave
invariant the topological action of (1.8), they only change (1.8) by a BRST-trivial term.

The next step to showing that this topological string theory describes free N’ = 4 super-
Yang-Mills is to show that the topological string amplitudes correctly reproduce super-
Yang-Mills amplitudes in the limit of small ‘t Hooft coupling. For string tree amplitudes
involving three half-BPS states, these amplitudes are guaranteed to agree since the zero
mode measure factor in the topological theory is the same as in (1.6) and since these
three-point BPS amplitudes do not depend on the AdS radius.

To show the equivalence of other types of amplitudes, a handwaving argument based on
open-closed topological duality will be presented which will hopefully be made more rigor-



ous in the future. The argument follows the proposals of [16] and [17, 18] and uses that the
open string field theory obtained by putting D3 branes at the AdS5 boundary of the topolog-
ical string reproduces N = 4 super-Yang-Mills field theory. Furthermore, it will be argued
that perturbing the closed topological action of (1.8) by the vertex operator of (1.1) as

Stop — Stop + 129 (1.10)

is equivalent to shifting the ‘t Hooft coupling constant of the Yang-Mills theory.

In addition to providing a string dual to free super-Yang-Mills, this topological string
also describes an unbroken phase of closed superstring theory in which all background fields
(including the metric) are treated on the same footing. Up to BRST-trivial terms, the topo-
logical action of (1.8) is independent of any specific choice for the spacetime metric, which
was one of the original motivations of Witten for studying topological string theory [19-21].
To recover non-topological backgrounds, one gives expectation values to the physical mod-
uli of the topological string. For example, the AdSs x S° background at nonzero radius is
obtained by perturbing with the physical vertex operator of (1.1) for the radius modulus,
and other string theory backgrounds which are asymptotically AdSs x S° can be obtained
by perturbing with vertex operators corresponding to other physical moduli.

As in previous topological proposals of Witten for an unbroken phase of string theory,
the target spacetime in the topological sigma model requires a complex structure [20, 21].
But unlike in previous proposals, the complex structure of spacetime is now dynamical and
is determined by the pure spinor ghost variables A* and 2@ which choose a U(5) subgroup
of (Wick-rotated) SO(10).! This can be seen from the kinetic term for the ten 2’s in the
first term of (1.8) which, to quadratic order, is fd2z(277)\/):)*1()rya’be)axagxb.

In section 2 of this paper, the pure spinor version of the AdSs x S® sigma model will
be reviewed. In section 3, it will be shown that non-minimal variables are unnecessary in
this model, that the zero mode measure factor and b ghost are much simpler than in a flat
background, and that a partial simplification also occurs in the Ramond-Ramond plane-
wave background. In section 4, a BRST-trivial version of the AdSs x S° sigma model will
be constructed by gauge-fixing a G/G principal chiral model, and this topological model
will be argued to describe the dual of free super-Yang-Mills. In section 5, conclusions and
open problems will be discussed.

2 Review of AdSs x S° sigma model

The pure spinor version of the worldsheet action for the AdSs x S° superstring can be
derived either by constructing the pure spinor action in a general curved background [23]
and setting the background superfields to their AdSs x S° values, or by adding terms to the
Green-Schwarz AdSs x S® action which replace x symmetry with BRST invariance [24]. The
second approach is more direct and will be reviewed here. The structure of supergravity
vertex operators will then be discussed.

!Similar observations on pure spinors and topological strings have been made by N. Nekrasov [22].



2.1 Green-Schwarz worldsheet action

In a general Type II supergravity background, the Green-Schwarz action is

/ dzz%(GMN(Z)+BMN(Z))8ZMEZN _ / sz%(nabE%J(Z)E?V(Z)+BMN(Z))OZM52N

(2.1)
where ZM = (2™ 6, 6F), E{(Z) is the super-vierbein, A = (a,a,d) are tangent-
superspace variables for ¢ = 0 to 9 and a,& = 1 to 16, and M = (m, p, i) are coordinate
variables for m = 0 to 9 and p,0 = 1 to 16, and (a,p) and (@, ) label spinors of the
opposite/same chirality for the Type IIA /B superstring.

In an AdS5 x S° background, the supervierbein Ejé[ can be explicitly constructed from
the Metsaev-Tseytlin left-invariant currents JA = (9*1(99)“X where g takes values in the
coset PSU(2,2/4)/(SO(4,1) x SO(5)), A = ([ab], a,, @) ranges over the 30 bosonic and
32 fermionic elements in the Lie algebra of PSU(2,2[4), [ab] labels the SO(4,1) x SO(5)
“Lorentz” generators, a = 0 to 9 labels the “translation” generators, and a,a@ = 1 to 16
label the fermionic “supersymmetry” generators. Note that A includes both the superspace
indices A as well as the SO(4, 1) x SO(5) indices [ab]. The PSU(2,2|4) structure constants
fgg include fi5 = 754 and f;ﬁ = 'ygg where 755 and (y*)*” are the 16 x 16 off-diagonal
elements in the Weyl representation of the 32 x 32 ten-dimensional ['-matrices, and 'ygﬁ

and (7“)ag are related to these matrices by

,ygg = naanﬁg(,}/a)aﬁ, (,ya)aﬁ = naanﬁﬁwgﬁ’ 770(3 = (701234)04@’ naﬁ = (701234)046.
(2.2)
Parameterizing the AdSs x S® coset as
9(2) = exp(a™ P + 0" Q. + 07 Q) (2.3)

where [Pm,Qﬂ,Q\ﬁ] are the AdSs x S° translation and supersymmetry generators, one
obtains
JA =B (2)02M, gl = WP 7)o zM (2.4)

where wg\jb] is the AdS5 x S° spin connection. Furthermore, in an AdSs x S° background,

it was shown in [25] that the only nonzero components of Bap = E%EgBMN are
1

_ _ 01234
B,5= B, =500""")

DO | —

of N (2.5)

So the Green-Schwarz action in an AdSs x S background is [3, 25]
2 1 a7b 1 oz_g T E
Sos = [ dz( 5nad"T + qn,5(17T = T707) ). (2.6)

Note that unlike the Green-Schwarz Lagrangian in a flat background in which the
term By y0ZM0ZYN transforms by a total derivative under spacetime supersymmetry, the
Green-Schwarz Lagrangian in an AdSs x S° background is manifestly PSU(2, 2|4) invariant
since it can be expressed in terms of the supersymmetric invariants J4.



2.2 Pure spinor worldsheet action

To generalize the Green-Schwarz action to the pure spinor formalism, one needs to add
canonical momenta (da,c/l\a) for the (9“,5’7) variables as well as left and right-moving
pure spinor ghosts, (A%, w,) and (/)\\a,ﬁ}a), which satisfy the pure spinor constraints
AYEA = Xv“/)\\ = 0. Because of the pure spinor constraints, w, and wg can only appear in

combinations which are invariant under the gauge transformations
dwe = ga(’)/a)‘)aa dig = 5‘1(%)\)&, (27)

which implies that they only appear through the Lorentz currents and ghost currents

1 I
Nop = §w%b>\, Jgh = wa XY, Nop = zW0yapA,  Jgn = WaA”. (2.8)

In an AdSs x S background, these additional worldsheet fields couple as
S = Sas+ / d22[—dgJ” +dmJ + daégFaﬁ — wa(VA)® + @a(VA)® + Rapea NP N (2.9)

where Fof — (701234)0‘5 = 770‘3 is the bispinor Ramond-Ramond field-strength, Rapeq =
FafeNdly = —N[ab)[cd) 13 the AdS5 x S5 curvature (the — sign is if a, b, ¢,d are on AdSs and
the + sign is if they are on S°), and

ab) o NG o~ 1 a ~NE
DaN)®, (VAT =0 +§J[ T (vaph)?. (2.10)

_ _ 1_
(VA =0X\* + §J
Because of the nonvanishing Ramond-Ramond flux, d, and c/l\a are auxiliary fields

which can be integrated out to give the action
1 - 3 5= 1—3
g — /de [§nabJ“Jb - na§<1JﬁJQ + Zﬂ]“) (2.11)
—wav)\a + @av/xa — Nab][cd] Nab]/\\TCd]

1 _ 3 o3\ 1 5 a3
_ / d%[i (nabJ“Jb 1,597 + 11,57 Jﬁ> — 5T =T (212)

+(—an)\o‘ + l/&av/):a — N[ab][cd) Nab]/\\de):| .

The action of (2.11) is manifestly invariant under global PSU(2, 2[4) transformations which
transform g(z,6,0) by left multiplication as §g = (24T;)g where T'; are the PSU(2,2[4)
Lie-algebra generators and is also manifestly invariant under local SO(4,1) x SO(5) gauge
transformations which transform g(x,&,é\) by right multiplication as dxg = g(A[“b]T[abQ
and transform the pure spinors as SO(4, 1) x SO(5) target-space spinors.

The BRST operator in the pure spinor formalism is defined as

Q= / dz \d,, + / dz Nody = / dz Naa )\ J + / dZ Naa T, (2.13)



where the auxiliary equations of motion for d, and c/l\a have been used. Under BRST

-~

transformations generated by @, g(x,,6) transforms by right-multiplication as
Q(9) = 9(\"Ta +A°T3) (2.14)
which implies that
QJY = VA —°% (3, N)ad?,  QJ% = VAT + 2% (1, A)a S, (2.15)
QI = (YN ad® + (aN)a]®, QI = %n[“b”c“”naa(tfa(%dk)“ — J*(eaV)®). (2.16)
And (2.13) implies that the pure spinors transform as
Qwa) = naat®,  Q@a) =nead”, Q") = Q(%) =0. (2.17)
To verify that (2.11) is BRST invariant, note that the first term in the Lagrangian
of (2.12) transforms under (2.13) to
%naa(ﬁwa L TOVAY — JOVAG — JUVAG),

Using the Maurer-Cartan equations

VI* = VI8 = 805107 = T0 50, VT VI = g s (P70, (218)

the second term in (2.12) transforms under (2.13) to

1 aea —a PV
577aa(JO‘V)\O‘ —J VA + JOVAY — J VY (2.19)

1 —dva , ovay 1 = s &
+7M0a0(J A" 4 TAY) = 21aa0(JIAY 4 JUA).

And the last term in (2.12) transforms under (2.13) to
g (JEVAY = TEVAD).
So ignoring the total derivatives in the second line of (2.19), (2.11) is BRST-invariant.

2.3 Nilpotent BRST transformations
Although it is consistent to use the BRST transformations of (2.14) and (2.17) which are

nilpotent up to equations of motion, it will be convenient to include auxiliary antifields in
the action so that the BRST transformations become nilpotent without using equations of
motion. As discussed in [10] and shown independently by G. Boussard [26], this is easily
done by adding the antifields w}, and @% to the AdS5 x S° action of (2.11) as

S — S+ /d2z77‘mw;&7’i (2.20)

[e%
where w}, and @ are auxiliary fermionic spinors which are constrained to satisfy

Nag (W) AT =0, 1,50 )N =0, (2.21)



and therefore each contain 11 independent fermionic components.
Under the BRST transformations of (2.14) and (2.17), one finds that

Q*g = —g(h™'Tiuy), (2.22)
2, — 1 fab] o, 0L

Q7w = 5 (Yapw)ah™ + (Ma)al” + Maa o (2.23)
1 oL

QQ&}\&\ = 5(7ab@)ah[ab] + (XVa)aga — Naa (2'24)

ow,,’
where

1 N\a a N o —a an a
B = SnaaA (PN, € =TT = P wa (v Ve € = =T+ 0" B5(7"N)a, (2:25)

2
oL Na 1 ab/ _cdy\& oL
9% VA" = S mab) e N (1), u.

_ 1 .
= = VA" = Silabl[ed (Y A)* N (2.26)

When acting on terms which are gauge-invariant with respect to the local SO(4,1) x
SO(5) transformations and the (w,w) gauge transformations of (2.7), the terms in (2.22)

which are proportional to (h[ab} €% Ea) can be ignored. To remove the terms in (2.22) which

are proportional to the equations of motion aaTLa and 88%, one should modify the BRST

transformations of w, and w4 to
Qua = NaaJ® + W},  Qiia =1aad  + B, (2.27)
and define the BRST transformation of the antifields w}, and @} as

N oL . OL
Qwa = _naaﬁa Qwa = Uaa%-

e [}

With the addition of (2.20) to the action, one can easily check that these BRST transfor-
mation leave the action invariant and are nilpotent without using equations of motion.

2.4 Supergravity vertex operators

In a general curved supergravity background, physical closed string vertex operators in the
pure spinor formalism are defined as states of ghost-number (1,1) which are in the BRST
cohomology. For massless supergravity states, these vertex operators only depend on the
zero modes of the worldsheet fields ZM = (2™, O*, éﬁ) as

V = XA A5 (2M). (2.28)
Under the BRST transformation generated by Q = [ dzA\%d, + [ dEXac/l\a,
QzM = X\EM(2) + X\EY (2) (2.29)
where Ei‘(f is the inverse supervierbein. So

QV = XNEWEY + N EM)0n Aas = (\V5 + NV (A3 405 (2.30)



[ab]

where V4 = EX (Op + w][f/t[b] Miqy) is the covariant derivative and M*” are tangent-space

Lorentz generators which act on the spinor indices o and @. Since MY\ = /):’ya/): = 0,
QV = 0 implies that A,5(Z) satisfies [27]

ngjcde v"/Aa ’yabcdev’YAaﬁ (231)

for any choice of [abcde]. And the gauge transformation
OV = QA + XN005) = (W V5 + NV ) (A% + A705) (2.32)
implies that A,5(Z) is defined up to the gauge transformation
0Asa = VaQdag + Vs, (2.33)
where €, and 5 are restricted to satisfy
Vorede V5% = ggdevaga =0 (2.34)

for any choice of [abcde].

As shown in [23], these equations of motion and gauge invariances describe an onshell
Type II supergravity multiplet. In terms of the standard supergravity superfields, A,5(Z%)
is identified with the spinor-spinor component B of the two-form Bap = EM A E Bun

in the gauge where (Yapede)*” Bap = (Yabede )™ BaB = 0. The equations of motion of (2.31)
follow from the superfield constraints

H,gs = Hapy = 0, (Yabede) " Toy = (Yabeae) Ty = Togy = 0, (2.35)
where
Hapo = EY EFEEOwByp) = ViaBpe) + T Boyp (2.36)

is the three-form field strength and TfB is the superspace torsion. And the gauge trans-
formations of (2.33) follow from the gauge transformations 6 By/y = ISy which imply
that 0Bap = V[AQB) + TEBQC'

In a flat background, the constraints of (2.31) can be easily solved in terms of plane-
wave solutions as AaB(Z) A, (k‘ o 9) k2 where k* = 0. Furthermore, the holomor-

phic structure of the sigma model implies that A,g(k, 0, é\) factorizes into A,z (k,0, é\) =
Aa(kz,G)Aa(kz,é\) where A, (k,0) is the super-Yang-Mills spinor gauge field satisfying
(’yabcde)aﬁDaAﬁ =0 with D, = 80% + kjm’)/aﬁa

Unfortunately, the non-holomorphic structure of the AdSs x S° sigma model does
not allow a similar factorization for A E( ) in an AdS5 x S® background. Nevertheless,
the fact that B,z has the background value of 7,5 in this background implies that the
h=0=0 component of 7°®A,5(Z) is the dilaton. The other components of A,5(Z) can
be determined by acting with supersymmetry on the dilaton.
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3 Simplifying the AdS5; X S® formalism

In this section, it will be explained that since (naaxﬁa) is in the BRST cohomology in an
AdS5 x S® background, there is no need to introduce the non-minimal variables which are
necessary in a flat background to regularize the functional integral over the pure spinors.
This simplifies the zero mode measure factor and b ghost in an AdSs x S° background, and
a partial simplification will also occur in the Ramond-Ramond plane-wave background.

3.1 BRST cohomology and extended Hilbert space

To show that (77)\/):) is in the BRST cohomology in an AdSs x S° background, note that
the surface term in (2.19) implies that

QLaas =0f — 0f (3.1)

where Ljqgg is the Lagrangian of (2.11) and
1 aja | ya ja 7 1 a7® | YaTe
f = a7+ 30, T = pnaa(A T + 357, (32)

Furthermore, since the BRST transformations of (2.14) and (2.27) are nilpotent, (3.1)
implies that Qf = 0V and Qf = AV for some V. One can easily check for f and f of (3.2)
that V = 1n,a \*\%.

Since this procedure relates dimension (1, 1) integrated vertex operators and dimen-
sion (0,0) unintegrated vertex operators, V = (77)&) is the unintegrated vertex operator
associated with the AdSs x S° Lagrangian. And since the AdSs5 radius which multiplies the
Lagrangian is a physical modulus, (77)\/)\\) must be in the BRST cohomology. Note that in
a flat background, the analogous procedure using the flat worldsheet Lagrangian produces
the physical unintegrated vertex operator V = ()\Wmﬂ)(/)\\wmé\).

Since (77)\/)\\) is in the BRST cohomology, it is consistent to impose the constraint
that (nAX) is non-vanishing. If \* and naa/)\\a are interpreted as complex conjugates, this
constraint implies that at least one component of A% must be nonzero. In the presence
of this constraint, the Hilbert space can be extended to include states which depend on
inverse powers of (n)\X).

As mentioned in the introduction, such an extension of the Hilbert space in a flat
background would trivialize the BRST cohomology since it would allow the state W =
(nAX)_l(nﬁﬁﬂﬁ/A\ﬁ) which satisfies QW = 1. But since (nAX) is not BRST-trivial, there is
no such W satisfying QW = 1 that can be constructed in an AdSs x S° background.

3.2 b ghost
Since [Q,T] = 0 where

1 _
T = 5nabJan + NoaJ T — wa VA (3.3)

is the left-moving stress tensor, one can ask if there exists an operator b satisfying
{Q,b} = T. Before extending the Hilbert space to include inverse powers of (nA\), such an
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operator does not exist. This situation is analogous to the situation in a flat background
where, before introducing non-minimal fields, one cannot construct an operator b satisfying
{Q,b} = That where Thyy = %axmaxm — P00 — wa,ONY.

However, after extending the Hilbert space to include inverse powers of (77)\/):), the b
operator can be defined as

1
b= (AN [ 1, "7+ LGN + |- )

Note that (3.4) resembles the first term of the b ghost in a flat background which is [28]
ay \—1% 1 afByrm 1 anrmn qpl 1 «
bfiat = (>‘ )‘a) Aa §'Ym II dﬁ + Z(an)ﬁ N™"00" + ZJghaa +e (3-5)

where )\, is a non-minimal field and ... includes terms with more complicated dependence
on the non-minimal fields.
To show that {Q,b} =T, use (2.14) to compute that

Nk 3 a 1 a/y.a a
Qb = () 5 Jb+5<m>aJ ()t (36)

A i L
+ 72 () 55 Nab VA + 2 (JO‘( a5 YN ()3 n50°)

1 o 7a VG
+7 (MaaA* T ) (557 T7) +

1
Z _(naaAQVAa)Jgh

4
1 .
— §nabJan + Nag IO T — wa VAY
where the identity

1. 1. 1
9205 = 5(1)ap (1) = 5 (") (Yab)” — 0203 (3.7)

has been used and terms proportional to w}, have been dropped since they vanish onshell.
Note that normal-ordering terms are being ignored, so one only needs to use (2.14) to
derive (3.6). Furthermore, note that

1 T\—1ya /. aby B ECAvAYe]
_WQV)‘a = 1(77)9\) IP‘ (7 b)aﬁngﬁNabVAB + (7704&)‘ VA )Jgh]

using (3.7) and AyeVA = 0. One can similarly define b satisfying {Q,b} = T where
T = Ly T+ aad T + Bz VA? and

_ ~ 1ol 1 —a—p 1 a 1
b= (77)‘)‘) 1)‘ |:_§'Yaa6J Jﬁ_Z(’Yab) AN bJﬁ 77anth :| (3'8)

Note that b is not holomorphic but b is BRST-trivial. The g-loop amplitude prescrip-

tion in the pure spinor formalism is given by

A, :/d?’g_?’r/d?’g_?’?((/Mb>3g_3</ >3g N /d 2:Ur(21)) (3.9)
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where U, are the dimension (1, 1) integrated vertex operators and p and [ are the Beltrami
differentials associated with the Teichmuller parameters 7 and 7. One normally requires
b = 0 so that ([ ub) is invariant under transformations that shift u by dv for any v.
However, assuming that BRST-trivial terms in the integrand do not contribute, it seems
to be sufficient to only require that b is BRST-trivial.

3.3 Functional integration and measure factor

In a flat background, functional integration over the 22 zero modes of A“ and A&
produces a divergent factor since these bosonic zero modes are non-compact. The most
convenient method for regularizing this divergence is to introduce “non-minimal” variables

Ao and /):a, together with their BRST superpartners r, and 75, and to modify the
BRST operator to [4, 5, 29]

Qnon—min = /dz()\ada + row®) + /d?(xacfa + ?aﬁa) (3.10)

where @* and @ are the conjugate momenta for A\, and /):a and the non-minimal variables
satisfy the constraints

M\ = M\ = i’ymi = i’ym? =0. (3.11)
One then inserts the regulator
N = exp[—p Q(0°Ng + 0925)] = expl—p(ARa + AoAg — 0%4 — 975)] (3.12)

into the functional integral where p is a positive constant. Since ' — 1 is BRST-trivial, the
amplitude must be independent of the constant p and the location of . Treating Ao and
Xa as the complex conjugates of A* and /)\\a, the insertion of N regularizes the functional
integration over the pure spinor ghost zero modes because of its Gaussian dependence
on . As shown in [4], functional integration using this regularization method in a flat
background implies that

(f(2,0,),0,)) = /dl%/d“Ad”Xd“Xd”i/d169d16§d11rd“?N Fx,0,),0,))

= [ @ [(@0)ar..co@D)a..x (3.13)

mg “ ni o pi a4a5 2 o si QS( )&4&5
X

flz, 0,70,
where f(x,ﬂ,)\,é\, X) is assumed to have ghost-number (3,3) and be independent of the
non-minimal fields. Note that (3.11) implies that r, and 75 each have 11 independent

>,>| Q@

components, and integration over these components reduces the [ d160d169 integral to
f d®0d°f because of the r, and 75 dependence in N.
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In an AdSs x S® background, the fact that (77)\/)\\) is in the BRST cohomology allows
one to treat \¢ and naaxa as complex conjugates instead of introducing non-minimal
variables. Although the zero mode integral [ A AN diverges because of the scale factor
in A\, one can easily regularize this divergence by restricting the zero modes of \* and A&
to satisfy (77)&) = A for some positive constant A. Since (77)&) is BRST-invariant, this
regularization preserves BRST invariance. Furthermore, since the ghost-number anomaly
implies that genus g amplitudes violate ghost-number by (3 — 3¢,3 — 3¢g), the dependence
on A can be absorbed by shifting the string coupling constant from e? to e?’ = A3, In
other words, the factor of e(29-2)¢" = A3-39¢(29-2)¢ 4 genus ¢ includes the A dependence.

With this regularization, the zero mode integration for tree amplitudes simplifies to
(F(,0,7,8, %)) = / 1 / 190457 sdet(BL) / QNN F(2,0,0,8.3)  (3.14)

where sdet(E4}) is the superdeterminant of the AdS5 x S° supervierbein and | dPONGON s
an integral over the projective pure spinors which (after Wick rotation) parameterize the

compact space %. For example, for three-point supergravity tree amplitudes,

I = XA AN AZZ) NN AR (2)) (3.15)
where )\O‘XaAaa(Z) is the supergravity vertex operator of (2.28). Integrating over the
projective pure spinors gives

10 103 ¢ — p(as))(@h7) 4(1) ) 3)
/d )\/d Af=T Aaa(Z)Agg(Z)AW(Z) (3.16)
where T(@)(@57) is the constant tensor obtained by symmetrizing naanﬁgnﬁ with re-
spect to (af7v) and (@7) and removing the gamma-matrix trace terms, i.e. removing the
terms proportional to Wﬁbﬁ or ng .

So the onshell three-point tree amplitude in an AdSs x S° background is claimed to be

(7). (3.17)

/ 40z / d'56d'8 sdet(Efy) TD@ A0 (7) 4% (7)AY

a@ ™65
It might seem surprising that the zero mode integration in an AdSs x S° background
selects the term in (A.g)? with 16 (6)’'s whereas the zero mode integration in a flat
background selects the term in (A,g)® with 5 ((9(/9\)78. However, note that three-point
amplitudes in an AdSs x S° background can be computed as a sum over N-point amplitudes
in a flat background where (N — 3) of the vertex operators deform the flat background to
AdSs x S°. If 11 of the extra vertex operators are Ramond-Ramond vertex operators
containing the term [ d%zF 2@, ds, one could contract 11 (9@)’5 in (A,g)® with these
vertex operators and convert the flat zero-mode measure factor into the AdSs x S° measure
factor. So the fdQZFo‘adada term in the AdSs x S® action of (2.9) plays the same role
as the exp[p(6“ry + é\a?a)] term in the regulator of (3.12) which absorbs 11 (9@)’5 after
integrating over [d'lr [ d'17.
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A separate argument for the validity of the integration measure of (3.14) is that it is
manifestly PSU(2,2|4) invariant since it can be written as

(f(z,0,),0,)\) = /Dg /leAdloX Flg, AN (3.18)

where g is the #@(25) coset and Dyg is the corresponding Haar measure. For three-

point supergravity amplitudes in an AdSs x S® background, PSU(2, 2|4) invariance together
with gauge invariance is expected to completely fix the amplitude up to an overall constant.

This is analogous to the statement that the three-point supergravity amplitude in a
flat background is completely fixed by super-Poincaré invariance and gauge invariance. In
a flat background, the expression [ dVz i a9 i leé\()\/)\\A)?’ would vanish by dimensional
arguments since it carries 11 too many factors of momentum and since k,.-ks = 0 for on-shell
three-point amplitudes. For this reason, the correct measure factor in a flat background
involves an integration over only 5 (95)’8. But in an AdSs x S° background, there is no
such dimensional argument since the expression [ dz [ d'%g f dlﬁé\()\/)\\A)?’ can depend on

inverse powers of the AdS radius as (rpaqs) !

. So assuming that (3.17) does not vanish
for some unknown reason, PSU(2,2|4) invariance implies that it must be proportional to
the correct three-point supergravity amplitude in an AdSs x S° background.

In some sense, the above definition of the integration measure for pure spinors in
an AdSs x S° background is more natural than the corresponding definition in a flat
background. Since the left and right-moving pure spinors are complex variables, it is
natural (on a two-dimensional Euclidean worldsheet) to identify the right-moving pure
spinor as the complex conjugate of the left-moving pure spinor so that the action is real.
But as explained above, this identification is insufficient in a flat background for defining
a regularized path integral since ()\5\) is BRST-trivial. So one is forced to introduce left
and right-moving non-minimal variables to regularize the path integral. However, in an
AdS5 x S° background, identification of the left and right-moving pure spinor variables as
complex conjugates allows one to define functional integration in the standard way without
requiring non-minimal variables.

For amplitudes at non-zero genus, the prescription in the pure spinor formalism is to
insert (3g—3) b and b ghosts and N integrated vertex operators into the functional integral
as in (3.9). After integrating out the non-zero modes of the worldsheet fields, one needs to
integrate over both the zero modes of (z,8, 5, )\,X) and the g zero modes of the spin-one
variables w, and wg. In a flat background, integration over the zero modes of w, and wg
produces divergences which are regularized by including the term [4, 5]

1 — 1= , -~
exp [p Q <5(M“b8)Nab + g(M“‘bS)Nabﬂ (3.19)
ab T ab Ay L~ ab L= by 5
=exp | —p( N"Ngp + NNy, — Z(Afy $)(AMYapd) — Z()ry 5) (A Yapd)

in the regulator NV of (3.12) where N, and ﬁab are the Lorentz currents for the

non-minimal variables and (s%,5%) are the conjugate momenta for (r,,75). However, in
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an AdSs x S° background, the worldsheet action of (2.9) already contains exp(—N®N,;)
dependence because of the AdSs x S° curvature which couples the left and right-moving
Lorentz currents. So the curvature of the AdSs x S° background acts as a regulator
for the (wq,ws) zero mode integration and eliminates the need for the non-minimal
regulator N of (3.19).

It should be noted that because of the non-holomorphic structure of the sigma model,
the measure factor for open string scattering amplitudes in AdSs x S° will not be the
“holomorphic square-root” of the closed string measure factor of (3.14). For example, for
D3 branes at the boundary of AdS5, the boundary condition P (70123)g)\6 implies that
)\701234X = M*\ = 0 because of the pure spinor constraint Ay*\ = 0. So one cannot
impose that (nAX) = 0 on the D3 brane boundary.

To regularize the functional integral over pure spinors in the presence of D3 branes,
one therefore needs to introduce the same non-minimal variables (Ay,74) on the boundary
as one would introduce in a flat background. After inserting the non-minimal regulator
N = exp[—p(A*Aq — 0°7,)] on the boundary and integrating over the non-minimal fields,
the zero mode measure factor for open string amplitudes will involve integration over only
5 #’s. This is expected since open string amplitudes on AdSs x S° describe N =4 d = 4
super-Yang-Mills amplitudes which, like d = 10 super-Yang-Mills amplitudes, are naturally
expressed in pure spinor superspace as integrals over 5 6’s [30, 31].

3.4 Ramond-Ramond plane-wave background

It is instructive to compare the structure of the zero-mode measure factors in flat
and AdSs x S° backgrounds with the zero-mode measure factor in a Ramond-Ramond
plane-wave background. The pure spinor action in this background was described in [6]
and has the same structure as (2.9) except that the non-vanishing components of F*% and

Rapeq take the values

~ 1 ~
FaB _ = pmapgr,af3 )aﬁ, Rijir =0k (3.20)

240 Wmnpqr = (’771234

+

where 27 = 20 £ 2% and j = 1 to 8 denote the transverse directions.

Splitting d, and c/l\a into their SO(8) components as
da=(47-d)a, da=(-r4d)a, dz=(v47-d)3, dz=(-1d)z  (3.21)

where A, A’ = 1 to 8, the term daFagc% in (2.9) implies that d4 and c/i;T are auxiliary
variables which can be integrated out. But the variables d4/ and d 7 are propagating and

o~

couple to 64" = ('y*'erH)A/ and 94’ = (’y*'ﬁ@)A/ through the first-order action
/ d*2[d 49607 + d ;,007]. (3.22)

In this plane-wave background, the operator Naa A\ of (1.3) is replaced by )\7+1234/)\\ =
nAE)\A)\A where 7, 7 = (¢'%**) | 7 is constructed from the SO(8) Pauli matrices oy ,, and

o~

M=y 04, M=V, M=ty A, MW=t (3.23)
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Since n AE)\A/)\\Z is in the BRST cohomology, oneAcAan treat 1, XX‘Z as the complex
conjugate of A and impose the constraint that n n EAA)\A is non-vanishing.

This resolves the problem of functional integration over \* and /):A, but one still needs
to regularize the functional integration over the remaining components M and A which

are SO(8) pure spinors since they satisfy the constraint
AN = XA Z 0 (3.24)

coming from the condition \yT\ = /):’er/);: 0. This regularization can be performed by
introducing non-minimal fields A4 and P\ 7 and their BRST superpartners 74 and 73,
which satisfy the constraints

XA/XA/ = XA/T’A/ = }‘\X’AE’ = /)\\A,AA, =0. (3.25)
One then adds the term f der/@A/ + f dE?X/EA to the BRST operator and defines
the non-minimal regulator as

N = exp {—p Q(HA/XA/—F@E/X@)] = exp {—p()\A/XA/—HAITA/+X‘Z//)\\2,—§@?2,)] (3.26)
Since there are seven independent 74/ and 73, variables, the zero mode integration in

a plane-wave background is of the form

(f(2,0,1,0,))) = / dg / A" AT / d*9d'0drd 7 N f(2,0,),0,\) (3.27)

- N 9 SO .
10 8nA 8nA

where the integration [ dAd\ is over the projective part of A and A (keeping 7, XAAX‘Z

~ ~

fixed). So instead of selecting the term in f with 5 (66)’s or 16 (66)’s, the zero mode
measure factor in a plane-wave background selects the term in f with 9 (95)’8.

Although this result may seem strange, it is consistent with the expectation from light-
cone gauge analysis. In light-cone gauge, the supergravity vertex operator in a plane-wave

background depends only on the transverse zero modes and has the form [15]
= f(aj, s,)l0) (3.28)

where a;r» and 52 are 8 bosonic and 8 fermionic operators constructed from the zero modes

which “excite” the ground-state wavefunction |0) of the harmonic oscillator for the massive
zero modes. In terms of the zero modes (27, 04, HA), the Lagrangian is

1 . . ) . PN 1 . . o~

574 + %k+(9A9A + 6404) — (k)2 (555]9@] + mmaz“az“) (3.29)

and the ground-state wavefunction is

1 . . P
0) = |47k™| 2 exp ( — |kt (53:%:] + inAIZHAGA)) (3.30)
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where k™ is the P momentum of the state.
In light-cone gauge, the measure factor (®1|®2)r,c can be computed either by using the
commutation relations of the operators in (3.28) or by evaluating the functional integral

(B4 |10 = /de/dSH/d8§ B1(a7, 04, 67) Dy(ad, 04, 67, (3.31)
Note that |0) has a well-defined norm since
(0l0)rc = / &z / da®0 / )kt | e W@ 420, 5040%) _ (3.32)

The covariant measure factor of (3.27) can be compared with the light-cone measure
factor of (3.31) using the relation that (V;|cyco|V2) should be proportional to (®1|P2)1,c
where V' is the BRST-invariant vertex operator of ghost-number (1, 1) corresponding to the
light-cone vertex operator ®, and cg and ¢, are operators satisfying {bg, co} = {bo, %} = 1.
The factors of ¢y and ¢y come from BRST gauge-fixing and are necessary for the covariant
measure factor to have ghost-number (3, 3).

In a plane-wave background, the BRST-invariant vertex operator corresponding to the
light-cone field ® (27,04, 04) is
V= )‘a/):aAaa(x7 97 (/9\) (nAA)\A)\A) (xja aAa é\A\)eik+$7+ik;7x+ +o (333)

where @ is the light-cone superfield of (3.28) and ... depends on #4" and 64" and is de-
termined by BRST invariance. Furthermore, since the b and b ghosts in the pure spinor
formalism have the term

b= a0ty d) + -, b= a8t Oy d) £ (3.34)
one can define ¢y and ¢ satisfying {bg,co} = {by, %} = 1 as
= [(027) TNy = (KH)"INA0Y, 7 = (@) IA 04y = (k)N (3.35)

So the covariant measure factor of (3.27) implies that

B,
V; Va) dx / dso4 / 4594 / d\d\ / dO g1 —— / do +, = 3.36
(Vilcoco|Va) / A 6>\A KOs (3.36)

(nAA)\A)\A) DDy (k)™ ()\A’QA’ A/@A') i(ky +k)a +ilky +k5 )t

= (kT)725(k) + k3)o(kT + k;)/de/dSGA/dSGA B, Py,

which is proportional to the light-cone measure factor (®1|®2),c of (3.31).

So in a plane-wave background, the covariant measure factor involving integration over
9 (95)’8 is related to light-cone integration over 8 (95)’8 plus an additional integration over
00 coming from the cy¢y term. In a flat background, the covariant measure factor of (3.13)
involving integration over 5 (95)’5 can be similarly related to light-cone integration over 4
(9@)’5 plus an integration over 00 coming from the cy¢y term. In light-cone gauge in a flat
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background, the fermionic zero modes are massless and in order to construct normalizable
wavefunctions, the SO(8) components #4 and 64 need to be split into U(4) components as

(67,6;) and ((/9? , é}) for I,T7 =1 to 4 [32]. The resulting light-cone wavefunction is a chiral
superfield ® (67, o1 ) satisfying the reality condition
—~K—=L_

1 — 1 =K=
D[DJD"D"@— GIJKLGTJI?ED DD D (13, (337)

and the light-cone measure factor in a flat background is
(D1]P2) 0 = / dBx / a0’ / 4407 3,9, (3.38)
which involves an integration over only 4 (95)’5

4 Topological AdSs X S5 sigma model

In this section, a BRST-trivial action will be constructed with the same BRST operator and
stress-tensor as the AdS5 x S° action of (2.11), and will be shown to arise from gauge-fixing
the G/G principal chiral model where G = PSU(2,2/4). This topological action will then
be argued to describe the zero-radius limit of AdS5 x S° by comparing its physical states
with the spectrum of gauge-invariant operators of free N' = 4 d = 4 super-Yang-Mills. A
handwaving argument based on open-closed topological duality will then be proposed for
showing that the scattering amplitudes of this topological string coincide with super-Yang-
Mills scattering amplitudes in the limit of small ‘t Hooft coupling constant.

4.1 Topological action

Because of the possibility of including (77)\})*1 dependence in the action, one can construct
a BRST-trivial action which has the same stress tensor as the AdSs x S° action of (2.11).
This topological action is

Sn = [ &2 Q) (4.1)

:/dQZ |:77 ( ( ) /)\(\) ) Ja7b+77aajaja —wav)\a+@avxa_n[ab} [cd] Nab]/\\]cd+naaw(>;@i:|

where
1 = 1 —a a2 1 1 —Q
U = 5(77)\)\) 1”(5%&3‘] JP = ('Yab) AN“”Jﬁ + JMaaTgn ) (4.2)
1 of 1 “ 1 a I = 4
5(77»\) 2 <—§%aﬁJ 7’ —Z(%b)oﬂ?gAN S 1TeaJgnd >
1 aa ~x *
+§77 (wawa - wawa)'

Note the close resemblence of the first two lines in ¥ with the b and b ghost of (3.4) and (3.8),
and that the last line of ¥ is gauge-invariant under (2.7) because of the constraints of (2.21).
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Since @ is nilpotent, (4.1) is invariant under the BRST transformation of (2.14) and (2.27)
and the resulting Noether charge is

Q= /dznaa)\aJa—{—/d?naa/):aja (4.3)

as before.

Using the identity of (3.7) and the BRST transformations of (2.14) and (2.27), it is
straightforward to show that QW is equal to the Lagrangian of (4.1). The BRST transfor-
mation of the first line of (4.2) is

1 [n‘“a(% )a (W)

o —a = 1o - 1 ~N - T
5 T T 4 naad T —wa VA + = ((w*wab)\)()\%bJ)+2(w*)\)()\J))],

2(n\N) 8(nA\X) wh

the BRST transformation of the second line of (4.2) is

1 [naa(%k)a(%x

a 7077 T ya Ja 1 sk N ~ Y
)s JT 406 "I+ B VAT — ——— (@ X) Ny ) +2(@ )\)()\J))}

2 2(nAN) 8(nAX)
(4.5)
and the BRST transformation of the third line of (4.2) is
1 = —Q ~ P~ = ~ ~= =
—2n*Cwiws + whJ — WaJY — wo VAY + wgVAY — Qn[ab][cd}N“bNCd]. (4.6)

2

It is interesting to note that the difference between the topological and AdSs x S°
actions of (4.1) and (2.11) is

aa a)\ o /): a o Y 1 5 —a .2
Stop — Sadss x5 = /d%[” OaNaOoNa gagh gy L, gegB _go8)| )

= —n 3

4(nAN) 4700
where the pure spinors ()\O‘,Xa) choose a complex structure which allows the covariant
construction of a Wess-Zumino term from the bosonic currents (J¢,J). Using M\ =
Ay*A = 0 and the BRST transformation of (2.14), one can easily check that (4.7) is BRST-
closed. And since (4.7) is antisymmetric in z and Z, it is clear that the stress tensor of Siop

is equal to the AdSs x S° stress tensor of (3.3).
One can formally define an analogous topological action in a flat Type II background as

St = / d’z Q(U™™) (4.8)

ad a)\ « /): a rraTT 3 T ana ] ~ aNa o ~
_ / 42z [’7 aNalNa ar _ g Fgo 4 3-085 — X + G208 + na“w(’;wg}
2(nAX)

where I1* = 0x® + 0~°00 + (/9\7“8«/9\, N is a constant bispinor, and
1 ~ 1A 1 — 1 — 1. —
P = (AN A ag (573611%;5 + 5 () FN 967 + ZJghaeﬂj (4.9)
1 )\A —1ya 1 aB a&\ 1 a Aabaé\a 1= aé\&
5 MAN) T A 0a | — 570 G — 1 (an)GN = 3 Joh
1

"‘577&&(1”04@3 — whWg)-
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The choice of n*® breaks Lorentz invariance for the Type IIB superstring, but for the
Type IIA superstring, Lorentz invariance can be preserved by choosing n%® = §@. Note
that unlike the usual pure spinor action in a flat background, the topological action S?Oarf
is manifestly spacetime supersymmetric and satisfies

a Uaa YaN)a 'Yb/): Q o=t =a
St — Say = /de[ (4(77)AX() ) (II°TT” — TT°T1%) — Ly (4.10)

where Ly is the standard Green-Schwarz Wess-Zumino term. However, unlike the topo-
logical AdSs x S° action of (4.1), the topological action of (4.8) in a flat background is
not well-defined since inverse powers of (77)\/)\\) are not allowed in the flat Hilbert space. As
emphasized in section 3, the presence of inverse powers of (77)\/)\\) in a flat background would
trivialize the BRST cohomology.

4.2 G/ G principal chiral model

In [9] and [10], an A-twisted N = 2 worldsheet supersymmetric sigma model constructed
#@(26) was conjectured to describe the zero-radius limit of
the AdSs x S° superstring. This topological sigma model was related by a field redefinition
to the AdSs x S° sigma model of (2.11), but the BRST operators for the topological and
AdS5x S sigma models were different. It was then shown in [11] that this N = 2 worldsheet

supersymmetric sigma model constructed from the fermionic coset % could be

from the fermionic coset

obtained by gauge-fixing the G/G principal chiral model

Py (41

S = Str/dzz(GlﬁG —A)(G1oG - 4) = /d%« nag (JA—AhT" -4
where G takes values in PSU(2,2[4), J = G~19G are the left-invariant currents, i 1s the
PSU(2,2[4) metric, and (A, A) is a worldsheet gauge field taking values in the PSU(2, 2[4)
Lie algebra. Although this G/G model appears to be trivial, it will be argued later that
it contains non-trivial physical states because of boundary conditions on the non-compact
PSU(2,2[4) generators.

The action of (4.11) is invariant under the local PSU(2,2/4) gauge transformations

3G =GQ, 6A=dQ+[A, Q] (4.12)

and to obtain the supersymmetric sigma model based on the fermionic coset, one first uses
the SO(4,2) x SO(6) generators of © to gauge away the bosonic elements in G so that G

PSU(2,214) 5 One then uses the fermionic generators

takes values in the fermionic coset SO(4.2)xS0(6)

of Q2 to gauge-fix
AT = A% +iAY =0, A" =A" —iA" =0, (4.13)

where T, = T, + 14 are the 16 fermionic generators in the upper-right square of
PSU(2,2|4) and T, = T, — iTx are the 16 fermionic generators in the lower-left square of
PSU(2,2/4).
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This fermionic gauge-fixing gives rise to bosonic ghosts (Za*,7a+

(Yo_,Y o) with the Faddeev-Popov action

) and antighosts

Syn = / A2~V V7% 4+ V0 V2] (4.14)
and the BRST operator

Q= /dznaﬁZo‘_Jﬁ"' —i—/d?nag?BJrja (4.15)
where 7,53 = (701234)04/3- Note that @? = 0 without imposing pure spinor constraints

on Z°= and Z°7 because Toy and Ty satisfy {Th4,Tp+} = {Tu—,Tp-} = 0. In this
gauge, the action of (4.11) reduces to an A-twisted N = 2 worldsheet supersymmetric

sigma model where (Z a= 77 Y, Y o+ ) are the bosonic worldsheet superpartners to the

Although the BRST operator of (4.15) in this gauge-fixing is different from the original
AdSs x S BRST operator of (2.13), it will now be shown that there is an alternative
gauge-fixing of the G/G model of (4.11) which leads to the topological action of (4.1) and
which has the same BRST operator as (2.13). To obtain the topological action of (4.1)

from (4.11), one first uses the local SO(4, 1) x SO(5) gauge invariances of (4.12) to gauge-fix
PSU(2,2/4)
SO@,1)x50(5)"

fermionic coset and (4.15) is the scalar worldsheet supersymmetry generator.

G to take values in the Metsaev-Tseytlin coset One next uses the fermionic

gauge transformations of (4.12) to gauge-fix
A% =0, A“=0, (4.16)

which gives rise to unconstrained bosonic ghosts (Z%,Z") and antighosts (Y,,Y5) with
the Faddeev-Popov action

Sgn = / d?2[~Y, N2 + ?av7a] (4.17)

where VZ% = 02 + %Z[ab] (Vjap) Z) and vZ® = 07" + S Alab] (fy[ab]Z)a. Since {T,,T3}

and {Tg, TE} are nonzero and Z® and Z“ are unconstrained, the BRST operator

Q= / dznes 20T + / dznesZ T (4.18)

implied by this gauge-fixing would not be nilpotent.

However, one still has ten bosonic gauge transformations of (4.12) which need to be
gauge-fixed. Although one could naively use these gauge transformations to gauge away
the remaining bosonic components of G, this will be argued later to be inconsistent with
the boundary conditions of the PSU(2,2|4) gauge parameters. Instead, one can use these
ten gauge transformations to gauge-fix 5 components of A% and 5 components of A" to
zero. The choice of which five components of A% and A" are gauge-fixed will be correlated
with the bosonic ghosts (Zo‘,ﬁa) in such a manner that the resulting BRST operator
is nilpotent. Using an AdSs x S° adaptation of the “extended pure spinor formalism”

— 292 —



of Aisaka and Kazama [14], this BRST operator will then be shown to have the same
cohomology as the original AdS; x S° BRST operator of (2.13).

To determine which components of A® should be gauge-fixed, note that (’ya)aﬁZaZﬁ
is a null vector which decomposes under SO(4,1) x SO(5) into

¢y = (’Yf)aﬁzazﬁa \Ilf - (Vf)aﬁzazﬁ (419)

for I =0to4 and I =5 to 9. Furthermore, if ®; is zero for I = 0 to 4, then V5 is also zero
for I =5 to 9. This can be seen from the fact that a pure spinor contains 11 independent
components and therefore satisfies 5 independent constraints. So if ®; = 0 for I =0 to 4,
Z* will be a pure spinor, which implies that ¥; = 0 for I =51t009. Since ®; = 0 implies
U; = 0, there exists an invertible matrix M }] (Z) such that

Vi(Z) = M{(2) ,(2). (4.20)
It will be convenient to define the matrix N/ (Z) such that
Yaap 222" = NN (2)®1(Z) (4.21)

where N = 6! for a = 0 to 4, and N/ = M/ for a = 5 to 9. Since n®(Z~7,Z)(ZyZ) = 0
and since the ®;’s are independent, ./\/al satisfies the identity

N NIN = o0. (4.22)

Similarly, one can define the matrix N i (Z) such that

%aﬁa?g =No2)®1(Z), 7NN, =0. (4.23)
One now uses N (Z) and N 2(7) to choose the gauge-fixing conditions
Niza* =0, N(2)A" =0 (4.24)
for I =0 to 4. With this gauge-fixing, the G/G model of (4.11) becomes

5 = / 42z {n s(TA = ANTP AP L FNTA ¢ fNTAC 4 £ A% 4 FRAY (4.25)
— YV Z =12 (Zryy)a A c“'ygﬁnﬁgzﬁ) +Y 2(VZ 0% (Z7) 0 A%+ c“'ygﬁnﬁgAﬁ)
—bIN (Ve + (Zy)aA" + (Z7%)aA") = BINI (Ve + (Z9%)a A% + (Z1")a A7)
and the BRST operator is

Q= / d2[Z° fo + b R ® 5 + A (NL 1 + K,)] (4.26)

+ / dz[Z°T5 + By R T + P NI + Ko))
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where (f1, f;, fa, f5) are Lagrange multipliers which impose the gauge-fixing conditions,
(¢, 2%, Z") and (by, by, Ya,Y ) are the Faddeev-Popov ghosts and antighosts coming from
the gauge-fixing of (4.16) and (4.24), and

RV = nabﬁi,/\/b], Ko =n0a(1aY)*Z", K, = naa(*ya?)aZa. (4.27)
After integrating out the worldsheet gauge fields and Lagrange multipliers which satisfy
auxiliary equations of motion, (4.25) reduces to

S = /sz [J“N;RI}N;]T’ 0T T = YoV 2o+ )+ Va(VZ + ) (4.28)
SONLTE 4 A BN T )l G400 ) (5T 4510 )|
with the BRST operator
Q= / d2[Naz Z°T% + bRV & + ENLRING (0 — K) + K, (4.29)
+ / s Z T + 3R Ty + NI RN (T — B + K
where
V2% =92 + %7[“”} (Vb 2)°, VZ" = 87" + %J[a’ﬂ (Y Z)%, (4.30)
Ve = ¢ + 7[ab} Cp, Ve = 9 + Jlable,,

and R;Jl is the inverse matrix to R/ = n“b./T/'i./\/};] satisfying R;}RJK = 5?. Note that the
]

last term of (4.28) comes from integrating out Al and A which converts the covariant
derivatives in (4.17) into the covariant derivatives of (4.30).

As shown in [14] using “homological perturbation” theory, the BRST operator of (4.29)
is equivalent to the BRST operator Q = [ dznaa)\aJa + [ dénaaxaja where the terms
i dzbr R ® ; and / dzb;R7T® 7 in (4.29) have been used to strongly impose the constraints
b; =0, =0 and to gauge ¢* = 0. In the presence of the constraints ®; = ®; = 0, the
ghosts Z® and Z“ reduce to pure spinors which will be called A* and e, Furthermore,
®; = ®; = 0 implies that (\y*) NI = (Xw“)aﬁi =0, and that

~

2(nAX)

where the normalization of (4.31) is fixed by n“b(J\/aIR;}NZ) = R;}R‘H = 5. Finally, when
c®=0and ®; = ®; = 0, it is straightforward to check that the ... terms in (4.28) are zero

and that (4.28) coincides with (4.1).
So it has been shown that the topological AdSsx S® action of (4.1) and BRST operator
of (4.3) can be obtained from the G/G principal chiral model of (4.11) by choosing the gauge

~ J— _I R

A =A% = NI(2)A* = N,(Z)A" =0, (4.32)

a
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where the tensors N (Z) and N i(?) are constructed from the bosonic Faddeev-Popov
ghosts. In the next subsection, it will be argued that this topological model describes
the zero-radius limit of the AdSs x S° superstring which is dual to free N' = 4 d = 4
super-Yang-Mills theory.

4.3 Physical states

If the topological model of (4.1) is to describe the zero radius limit of the AdSs x S°
superstring, physical states in the BRST cohomology of this model should correspond to
gauge-invariant super-Yang-Mills operators at zero ‘t Hooft coupling. Naively, the G/G
model has no physical states since one could use the local PSU(2,2|4) gauge invariance
of (4.12) to gauge G = 1. In this gauge, there are no propagating ghosts and the equations

of motion for the worldsheet gauge field are simply AA =AM =
However, because of the non-compact generators in PSU(2,2/4), there are subtleties
in choosing the gauge G = 1. Suppose one parameterizes the PSU(2,2|4) matrix G as

G = exp(z™ P, + Hi;q;% + gyﬁi) exp(—yD + qukRjk + L M™") exp (hy K™ + £fsi + Eigy)

(4.33)
where (P, q;»L , ﬁi) are the N' = 4 d = 4 translation and supersymmetry generators for m =
0t03,j=1to4and (u,[1) = 1to2, (D, R/*, M™) are the dilatation, SO(6) R-symmetry,
and SO(3,1) Lorentz generators, and (K™, sﬂ,?? ) are the conformal and superconformal
generators. With this parameterization of G, the global PSU(2,2[4) isometries 0G =
Y G transform the variables (xm,ﬁﬂ,gy) into themselves in the standard N' = 4 d = 4

superconformal manner. Furthermore, using the relations
. 1 . . 1 .
Kme 9P = e WP (e VKy,), she VP =e VP (e72Ys)), E?e*yD = e*yD(e*EyE?), (4.34)

one finds that in the limit y — oo, the variables (h™, 5;-‘ ) E;) are invariant under the global

PSU(2,2[4) transformations. So it is natural to identify (x, 9&,5?) as parameterizing the
boundary of AdS5 x S° in the limit where y — oo.

Under the local PSU(2,2[|4) gauge transformations G = GQ of (4.12), one could
naively gauge-fix to zero all the variables in (4.33). However, using the relations

_ _ _ _ 1 _ _yD—j Sl gy

e VPP, = (e VP,)e VP, e qué‘ = (e 2yq§‘)e vb e quf-L = (e 2yq£)e vD ' (4.35)
one finds that in the limit where y — oo, the variables (xm,H,ﬂ,@?) are invariant under
these gauge transformations. So assuming that the gauge parameters in € of (4.12) do not
blow up when y — oo, the boundary of AdSs x S° is gauge-invariant and cannot be gauged
away. The G /G principal chiral model could therefore have physical states which depend

non-trivially on the AdS5 x S® boundary variables (2™, 92,5?) when y — 00.?

2 Using the gauge-fixing to the fermionic coset, the 2™ variables were gauged to zero which explains
why it was difficult to construct physical vertex operators in terms of the fermionic coset variables. In [11],
it was conjectured that the non-trivial physical states could emerge after including a kinetic term for the
worldsheet gauge field. However, this conjecture appears to be incorrect since the kinetic term goes to zero
in the infrared limit of the sigma model. T would like to thank A. Polyakov for correcting this point and for
suggesting that the topological action should be perturbed by an appropriate radius-dependent operator.
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In fact, it is easy to verify that in the gauge of (4.32) where G takes values in the

Metsaev-Tseytlin coset g € %,

homology. Using the topological action of (4.1), the BRST operator of (4.3) transforms

there are such physical states in the BRST co-

Qg = g(\“Ty + X°T3) (4.36)

in precisely the same manner as in the AdSs x S° formalism of section 2. So the supergravity
vertex operator V = X’XaAaa(x, 0, (/9\) is in the BRST cohomology of the topological model
when A5 satisfies the equations of motion and gauge invariances of (2.31) and (2.33).
These supergravity vertex operators depend only on the zero modes of the worldsheet
variables and correspond to the half-BPS Yang-Mills operators. Vertex operators corre-
sponding to non-BPS Yang-Mills operators are expected to depend on non-zero modes of
the worldsheet variables and will be more difficult to explicitly construct. Nevertheless, it
will be conjectureed that these non-BPS vertex operators can be obtained from BPS ver-

tex operators by transforming the worldsheet variables described by the Metsaev-Tseytlin
¢ g c PSUC214)
COS€L 9 © 36(1,1)xS0(5)

dg(a) = X(0)g(0) (4.37)

where 0 < o < 27 is the closed string parameter and (o) is a PSU(2,2[4) transformation
which is allowed to depend on o¢. Although an explicit construction of these non-BPS
vertex operators is unknown, they should be defined such that they are ghost-number 2
elements in the BRST cohomology as usual in the pure spinor formalism.

Since (4.37) acts by left multiplication and the BRST transformation of (4.36) acts by
right multiplication, BRST transformations commute with (4.37). So QV'(g) = 0 implies
that QV (g + dg) = 0 where dg is defined in (4.37). When X is independent of o, (4.37) is
a global PSU(2,2|4) transformation which takes half-BPS vertex operators into half-BPS
vertex operators. But when 3 depends on o, (4.37) can take half-BPS vertex operators
into non-BPS vertex operators which depend on non-zero modes of the worldsheet vari-
ables. Although (4.37) does not leave invariant the topological action of (4.1) when 0,%
is nonzero, the change of the topological action is BRST-trivial and can be expressed as
6S = [d*2Q[¥(g+6g) — ¥(g)] where U is defined in (4.9). So the transformation of (4.37)
takes physical states into physical states.

To see an example where (4.37) transforms a physical half-BPS vertex operator into a
physical non-BPS vertex operator, consider the half-BPS vertex operator |0); correspond-
ing to the long gauge-invariant super-Yang-Mills operator

Tr(Z7) (4.38)

with large R-charge J where Z is the scalar at 2" = 0 with R-charge +1 with respect to a
U(1) direction of SO(6). To be explicit, choose Z = ¢12 where ¢;;, are the six Yang-Mills
scalars and J is the charge with respect to the U(1) generator 3(R} + R3 — RS — R}). The
operator of (4.38) is invariant under all PSU(2,2[4) transformations of (4.37) except for
the four translations P,,, the four R-symmetry generators (R%, R%, R}, R?), and the eight
supersymmetry generators (g}, ¢} ,g}t,qi). Under these eight bosonic and eight fermionic
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transformations, the operator of (4.38) transforms in the same manner as in a Ramond-
Ramond plane-wave background when acted on with the eight bosonic and eight fermionic
light-cone oscillators [15].

To be more explicit, suppose that (En)é‘C transforms g(o) as dg(o) = em"ng(a).
Then (3,)i]0); is the vertex operator corresponding to the long gauge-invariant Yang-

Mills operator
J

S Tr(Z™ 527 )T (4.39)
m=1
As in a plane-wave background, this operator vanishes by cyclicity of the trace so one
needs at least two o-dependent transformations to construct a physical states which satisfies
Lo — Lo = 0. For example, (3_,)5(3,)3]0) is the non-BPS vertex operator corresponding
to the long gauge-invariant Yang-Mills operator

J
Z Tr(panZ™ ¢32 2 ™)e* M7 (4.40)

m=1

The spectrum of these non-BPS operators is easily computed using the PSU(2,2|4)
algebra. For example, [D — J, R}] = R} and [D — J, R}] = R} where D is the dilatation
generator. So the state (X_,,)}(3,)i]0) has eigenvalue D — J = 2 which is independent of
n. This agrees with the expected result at zero ‘t Hooft coupling since the large R-charge
formula for the eigenvalue of the n'" oscillator mode is

dmgs N

D —J),=1/1
(D= T =142

n? (4.41)
which is independent of n when gsN = 0.

4.4 Scattering amplitudes and open-closed duality

If the topological action Siop of (4.1) describes the zero-radius limit of the AdSs x S % super-
string, the AdSs x S® superstring at infinitesimal radius r should be described by the action

Sr - Stop + TQSAdS (442)

where Saqg is the vertex operator for the radius modulus and is also the original AdSs x S°
action of (2.11). Since Siop and Saqg are both invariant under the BRST transformation
generated by (2.13), (4.42) is also BRST invariant.> Note that one could also consider
the action S, = tSop + r2Sx4s where t is a constant, but since Stop 18 BRST-trivial, the
theory must be independent of the value of t.

The Maldacena conjecture predicts that perturbative superstring scattering amplitudes
computed in the background of (4.42) should coincide with perturbative correlation func-
tions of gauge-invariant super-Yang-Mills operators at small 't Hooft coupling. Although it
is not yet known how to compute topological string amplitudes in the background of (4.42),

3Using the previous proposal of Stop based on the fermionic coset, such a perturbation of Sio, would
not be allowed since the topological and AdSs x S® BRST operators were different.

,27,



a handwaving argument will be sketched based on open-closed topological duality that
such amplitudes should agree with the analogous super-Yang-Mills computations. If this
handwaving argument could be made rigorous, it would provide a proof of the Maldacena
conjecture at small 't Hooft coupling.

The handwaving argument is closely related to ideas in [16] and [17, 18] which describe
open-closed topological duality in the context of the Kontsevitch model and Chern-Simons
theory. The action Sy, of (4.1) describes a closed topological string theory, and one can
define an open topological string theory by placing M D3 branes at the boundary of AdSs.

As usual, the D3 brane boundary conditions are Dirichlet for the (z*,...,2%) variables,
Neumann for the (2, ..., 23) variables, and
M= (02)aA", @a = (Jo123)3wa (4.43)

for the pure spinor variables. Furthermore, the fermionic boundary conditions imply that
Jo = (70123)37“, so the BRST operator satisfies Q7 = Qg on the boundary.

As discussed at the end of subsection (3.3), (4.43) implies that (nAX) = AyiX = 0,
so one needs to introduce non-minimal variables on the boundary. These non-minimal
variables turn the zero mode measure factor into the same measure factor as in a flat
background which is the d = 4 dimensional reduction of

((A™0) (A" 0) (MP6) (6vmnpl)) = 1. (4.44)
One might be worried that the term

()"Ya)an /\()"Yb)a Jajb (4.45)

2(nAX)

in the action of (4.1) becomes singular on the boundary where (77)&) = 0, but the numerator
()\%)ano‘a(/)\\%)a also vanishes on the boundary where it is proportional to Ay*y*y°A = 0.

The first step in the open-closed duality argument is that the only physical open
string states on the M D3 branes are massless U(M) N = 4 super-Yang-Mills states. It
is clear that these super-Yang-Mills states are in the spectrum since the vertex operator
V = A*A,(z,0) is in the open string BRST cohomology when A, (z,0) satisfies the d =
4 dimensional reduction of the d = 10 linearized super-Yang-Mills equations of motion.
However, the absence of other states in the open string BRST cohomology remains to be
proven. Nevertheless, it is reasonable that there are no other physical open string states
since the D3 branes on the AdSs boundary preserve PSU(2,2|4) invariance, so any other
such states would have to preserve N' = 4 d = 4 superconformal invariance and transform
in the adjoint representation of U(M).

The next step in the argument is that the open string field theory action given by

1
a2

S= S VQV+ §VVV> (4.46)

reproduces the N' = 4 d = 4 super-Yang-Mills field theory action where V is the off-shell
open string field, ¢ is the square-root of the closed string coupling constant g5, and the
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zero-mode measure factor in (4.46) is the d = 4 dimensional reduction of (4.44). This
step is reasonable since, as in the Chern-Simons topological string [33], one expects the
Feynman diagrams of the open topological string to reduce to the Feynman diagrams of
the massless field theory. And as shown in [30, 31|, the d = 10 super-Yang-Mills field
theory action (or its dimensional reduction) can be expressed as S = g%(VQV + %VVV>
where V' = A\*A,(z,0), An(x,0) is an off-shell d = 10 spinor superfield, Q@ = A\*D,,, D,, is
the d = 10 supersymmetric derivative, and ( ) is the zero mode measure factor of (4.44).
Furthermore, it will be assumed that as in the Chern-Simons topological string [33], closed
string states decouple from open string states and do not contribute to open topological
string scattering amplitudes.

So when r = 0 in (4.42), it has been argued that the open string field theory for M Ds
branes at the boundary describes U(M) super-Yang-Mills theory with coupling constant
g = /9s- The final step in the argument is that adding the r2Saqg perturbation to Stop
in (4.42) affects the open string field theory by shifting the 't Hooft coupling constant.
This step has an analog in the open-closed duality of [16] where parameters of the closed
string background of topological gravity were shown to affect the open string field theory
by shifting parameters in the Kontsevitch matrix model.

The justification for this step is that insertion of a closed string vertex operator at
a puncture in an open topological string amplitude can be replaced by expanding the
puncture into a hole and inserting an appropriate D-brane boundary state [16, 34]. For an
arbitrary closed string vertex operator, the corresponding D-brane boundary state may be
difficult to construct. But for the closed string vertex operator Saqs which is PSU(2,2|4)
invariant, it seems reasonable to assume that the corresponding D-brane boundary state is
proportional to a D3 brane at the AdSs boundary. Note that the proportionality constant
f(r) must go to zero when r — 0 in order to be consistent with the assumed decoupling of
closed string states from open string states in the topological string. So inserting the closed
string vertex operator Saqg at a puncture in an open topological string amplitude should be
equivalent to expanding the puncture to a D3 brane hole and multiplying by a factor of f(r).

Perturbing the background from Siop, — Stop + r2Sa4s is equivalent to inserting an
exponential set of closed string vertex operators, and for each open string diagram with A
holes and p punctures, the scattering amplitude is proportional to

(g*M)" ()P (4.47)

where (g2M )h comes from the usual (A Hooft)h factor in the 't Hooft expansion. Replacing
the punctures by D-brane holes and including the proportionality constant of f(r), the open
string scattering amplitude with H holes is proportional to

> LJ PR (@MY (2 () = (a0 + 72 ()" (4.48)
h+p=H P

where the factor of (%T;!)! comes from the different ways to split the H holes into h holes

and p punctures.
So in the background of (4.42), it has been argued that the open string field theory
for M Ds branes on the AdSs boundary describes super-Yang-Mills theory where the ‘t
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Hooft coupling is shifted from g>M to g?M + r2f(r). Note that if one could show that
f(r) were equal to 72, this argument would imply that the ‘t Hooft coupling is equal to r*
when M = 0. So the relation \ipoof = r* would be valid both at small and large radius.

5 Conclusions and discussion

In the first half of this paper, it was shown that (77)&) is in the BRST cohomology in an
AdS5 x S° background, which implies that the left and right-moving pure spinor ghosts
can be treated as complex conjugate variables. This eliminates the need for non-minimal
variables and simplifies the zero-mode measure factor and b ghost.

In the second half of this paper, a BRST-trivial version of the AdSs x S° action was
constructed by gauge-fixing a G/G principal chiral model where G = PSU(2,2/4). This
topological action was argued to describe the zero radius limit which is dual to free super-
Yang-Mills, and perturbing the topological action by the vertex operator for the radius
modulus was conjectured to describe super-Yang-Mills at small 't Hooft coupling.

One possible method for proving this conjecture uses open-closed topological string du-
ality along the lines proposed in the previous subsection. However, a more direct method
would be to compute the topological closed string amplitudes and compare with the per-
turbative Feynman diagrams of the super-Yang-Mills field theory. In [11], a connection
was found between networks of Wilson lines constructed from worldsheet gauge fields in
the G/G model and the propagators and vertices of N' = 4 super-Yang-Mills Feynman
diagrams. It would be very exciting if amplitude computations in the topological model
could be related to counting these Wilson line networks in the G/G model.

Although it is well-understood how to compute scattering amplitudes with conventional
topological string theories, the topological model of (4.1) has some new features which have
not yet been studied. Unlike the usual topological strings where the complex structure of
the target spacetime is fixed, the complex structure of the target spacetime in (4.1) is
determined dynamically by the pure spinors (A%, Xa) which choose a U(5) subgroup of the
(Wick-rotated) SO(10) Lorentz group. This can be seen from the kinetic term for the z’s in
the topological action which, to quadratic order, is [ sz(QUAX)_lnaa()\%)a(/)\\Wb)aaxagxb.
So classical instanton solutions satisfy

(Ma)adz® =0,  (Aya)adz® =0, (5.1)

where (Ay,)q determines which five complex components of dx® must vanish.

Another new feature of the topological sigma model of (4.1) is that the ghost-number
anomaly does not fix the number of unintegrated versus integrated vertex operators. Since
vertex operators can be multiplied by inverse powers of (77)\/):) without spoiling BRST
invariance, one can construct unintegrated vertex operators of ghost-number zero such
as V = (n)\/)\\)_l)\o‘/)\\aAaa(:c,H,é\). It is unclear if the topological amplitude prescription
should involve both unintegrated and integrated vertex operators, or only unintegrated
vertex operators. Similarly, it is unclear if the genus g topological amplitude prescription
requires integration over the moduli of genus g Riemann surfaces.
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In addition to describing the zero radius AdSs x S° limit, the topological model
of (4.1) can also be interpreted as a tensionless string in which all massless and massive
background fields are treated on equal footing. Changing the target-space metric in the
topological action is a BRST-trivial operation so, as proposed by Witten, the topological
model describes string theory in an “unbroken phase” in which general covariance does
not require an explicit metric [19, 21].

By giving background values to physical moduli, one can perturb the topological
model into non-topological string theories which describe backgrounds that are asymptot-
ically AdS5 x S® but are not necessarily PSU(2,2/4) invariant. For example, perturbing
with the vertex operator for the radius modulus deforms the topological action into the
PSU(2,2[4)-invariant AdSs x S action of (2.11), but perturbing with other physical
moduli will lead to superstring backgrounds which are asymptotically AdSs x S° but
which are not PSU(2,2|4) invariant.

In some sense, these asymptotically AdSs x S° backgrounds are more natural back-
grounds for the pure spinor formalism than asymptotically flat backgrounds. In asymptot-
ically AdSs x S° backgrounds, the worldsheet action can always be constructed from the
Metsaev-Tseytlin coset g € % even though the action is not necessarily invari-
ant under the global PSU(2,2|4) isometries g = ¥g. Furthermore, the BRST operator in
these backgrounds always acts geometrically as Qg = g(A\*T, —i—XaTa) and there is no need
to introduce non-minimal variables. And in the limit where the radius goes to zero, the
topological AdSs x S° pure spinor action and BRST operator can be derived by gauge-
fixing a G/G principal chiral model. This contrasts with the pure spinor formalism in a
flat background which has not yet been derived in a simple manner from gauge fixing.
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