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1 Introduction

Up to now, the only superstring formalism suitable for covariantly quantizing the AdS5 ×
S5 background is the pure spinor formalism [1]. Because of the Ramond-Ramond flux,

the Ramond-Neveu-Schwarz formalism cannot describe this background. Although the

covariant Green-Schwarz formalism can classically describe the AdS5 × S5 background,

this formalism has only been quantized in light-cone gauge by expanding around classical

solutions which break the target-space PSU(2, 2|4) invariance. It should be noted that for

computing the physical spectrum, the light-cone Green-Schwarz formalism is probably the

most convenient since it includes only physical degrees of freedom and does not require

ghosts. However, for computing scattering amplitudes or for describing the spectrum in a

PSU(2, 2|4)-invariant manner, the pure spinor formalism is expected to be more convenient

since it manifestly preserves all symmetries.

In a flat target-space background, the worldsheet action in the pure spinor formalism

is quadratic and it is easy to compute scattering amplitudes using the free-field OPE’s of
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the worldsheet fields. However, in an AdS5 × S5 background, the worldsheet action is [2]

S =

∫
d2z

[
1

2
ηabJ

aJ
b − η

αbβ

(
3

4
J

bβJ
α

+
1

4
J

bβ
Jα

)

−wα∇λα + ŵbα∇λ̂bα − 1

4
η[ab][cd](wγabλ)(ŵγcdλ̂)

]
(1.1)

where JA = (g−1∂g)A and J
A

= (g−1∂g)A are the Metsaev-Tseytlin left-invariant cur-

rents [3], A = (a, α, α̂, [ab]) are the PSU(2, 2|4) Lie-algebra indices, g takes values in the
PSU(2,2|4)

SO(4,1)×SO(5) coset, (λα, wα) and (λ̂bα, ŵbα) are the left and right-moving pure spinor vari-

ables, and (ηab,ηαbβ
,η[ab][cd]) are the nonvanishing components of the PSU(2, 2|4) metric. The

global PSU(2, 2|4) isometries act on g by left multiplication as δg = Σg, and these global

isometries commute with the BRST transformations which act by right multiplication as

Qg = g (λαTα + λ̂bαTbα) (1.2)

where Tα and Tbα are the fermionic generators of PSU(2, 2|4). Since the JA currents

are not holomorphic, it is difficult to compute OPE’s and scattering amplitudes in an

AdS5 × S5 background.

Nevertheless, it will be shown in the first half of this paper that there are several

features of the pure spinor formalism in an AdS5 × S5 background which are simpler than

in a flat background. Unlike the worldsheet Lagrangian in a flat background which trans-

forms by a total derivative under d = 10 supersymmetry transformations, the worldsheet

Lagrangian of (1.1) is manifestly PSU(2, 2|4) invariant. As a consequence, the vertex oper-

ator for the zero-momentum dilaton in an AdS5 ×S5 background is manifestly PSU(2, 2|4)
invariant and can be expressed as the ghost-number (1, 1) operator

V AdS = ηαbαλαλ̂bα (1.3)

where ηαbα ≡ (γ01234)αbα. On the other hand, the zero-momentum dilaton vertex operator

in a flat background is

V flat = (λγmθ)(λ̂γmθ̂), (1.4)

which transforms under spacetime supersymmetry into a BRST-trivial operator.

Because (ηαbαλαλ̂bα) is in the BRST cohomology in an AdS5 × S5 background, it is

consistent to impose the constraint that (ηλλ̂) is non-vanishing and to extend the Hilbert

space to include states which depend on inverse powers of (ηλλ̂). Note that in a flat

background, (ηλλ̂) is not in the cohomology and can be written as (ηλλ̂) = Q(ηαbαθαλ̂bα). So

in a flat background, such an extension of the Hilbert space would trivialize the cohomology

because of the state W = (ηλλ̂)−1η
β bβ

θβλ̂
bβ satisfying QW = 1, which would imply that

any BRST-closed state V could be written as V = Q(WV ).

After extending the Hilbert space in this manner and interpreting λα and ηαbαλ̂bα as

complex conjugates, it is straightforward to define functional integration over the pure

spinor variables. Unlike in a flat background where one needs to introduce additional

“non-minimal” variables to functionally integrate over pure spinors [4] [5], there is no

– 2 –
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need to introduce non-minimal variables in an AdS5 × S5 background. In some sense, the

non-holomorphic structure of the AdS5×S5 sigma model automatically regularizes the 0/0

divergences which were regularized in a flat background by the non-minimal variables.

Since there are no non-minimal variables, the zero mode measure factor and the com-

posite b ghost are simpler in an AdS5 ×S5 background than in a flat background. In a flat

background, the tree-level zero mode measure factor is

〈f(x, θ, λ, θ̂, λ̂)〉 =

∫
d10x

∫
(d5θ)α1...α5

(d5θ̂)bα1...bα5
(1.5)

(
γm ∂

∂λ

)α1
(

γn ∂

∂λ

)α2
(

γp ∂

∂λ

)α3

(γmnp)
α4α5

(
γq ∂

∂λ̂

)bα1
(

γr ∂

∂λ̂

)bα2
(

γs ∂

∂λ̂

)bα3

(γqrs)
bα4 bα5

f(x, θ, λ, θ̂, λ̂)|
θ=bθ=0

and the b ghost satisfying {Q, b} = T depends in a complicated manner on the non-minimal

variables. In an AdS5 × S5 background, the tree-level zero mode measure factor is simply

〈f(x, θ, λ, θ̂, λ̂)〉 =

∫
d10x

∫
d16θd16θ̂ sdet(EA

M )

∫
dλdλ̂ f(x, θ, λ, θ̂, λ̂) (1.6)

where EA
M is the target-space supervierbein and

∫
dλdλ̂ is a compact integration over the

projective pure spinors. And the composite b ghost is

b = (ηλλ̂)−1 λ̂bα

[
1

2
(γaJ)bαJa +

1

4
ηαbαNab(γabJ)α +

1

4
ηαbαJghJα

]
(1.7)

where (Jα, Ja, J bα) are the left-invariant currents constructed from g, and Nab and Jgh are

the Lorentz and ghost-currents for λα.

It is instructive to consider the pure spinor formalism for the Ramond-Ramond plane-

wave background [6] where a partial simplification also occurs. In this background, the

operator of (1.3) is replaced with (λγ+1234λ̂) which only involves the (γ+λ) and (γ+λ̂)

components of the pure spinors. So one still needs to introduce non-minimal variables for

the (γ−λ) and (γ−λ̂) components in order to perform functional integration. This implies

that the tree-level measure factor in the plane-wave background involves integration over 18

θ’s, as opposed to the 10 θ’s in a flat background or the 32 θ’s in an AdS5×S5 background.

In principle, these results could be used to compute AdS5 × S5 scattering amplitudes

without the regularization complications that plague amplitude computations in a flat

background [4, 5]. Unfortunately, the difficulties with evaluating OPE’s and with con-

structing explicit vertex operators in an AdS5 ×S5 background will probably make it hard

to compute non-trivial scattering amplitudes at finite AdS radius. Nevertheless, it might

eventually be possible to compute amplitudes at infinitesimally small AdS radius and test

the Maldacena conjecture in the perturbative super-Yang-Mills regime.

In order to compute superstring amplitudes in this perturbative super-Yang-Mills

regime, the first step would be construct a closed string theory that describes the zero

radius limit that is dual to free N = 4 super-Yang-Mills theory [7]. Since super-Yang-Mills

is a field theory, it is natural to try to describe this zero radius limit using a topological

– 3 –
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string theory [8]. One recent topological string proposal [9, 10] was constructed from the

fermionic coset PSU(2,2|4)
SO(4,2)×SO(6) which was related by a field redefinition to the pure spinor

formalism. This topological string theory was later obtained in [11] by gauge-fixing the

G/G principal chiral model with G = PSU(2, 2|4), and similar G/G topological models for

the zero radius limit have been proposed by A. Polyakov [12] and H. Verlinde [13].

In the second half of this paper, it will be shown that there is an alternative gauge-

fixing of the G/G principal chiral model which produces a topological string theory based

on the Metsaev-Tseytlin coset PSU(2,2|4)
SO(4,1)×SO(5) instead of the fermionic coset PSU(2,2|4)

SO(4,2)×SO(6) .

This alternative gauge-fixing is related to an AdS5 × S5 generalization of the “extended

pure spinor” formalism proposed by Aisaka and Kazama [14] and, unlike the BRST trans-

formation for the gauge-fixing to the fermionic coset, the BRST transformation using this

alternative gauge-fixing is the same as in (1.2).

The worldsheet action of this topological string theory is BRST-trivial and is

Stop =

∫
d2z

[
(λγaγbλ̂)

2(ηλλ̂)
JaJ

b
+ ηαbαJ

α
J bα − wα∇λα + ŵbα∇λ̂bα − 1

4
η[ab][cd](wγabλ)(ŵγcdλ̂)

]
,

(1.8)

where JA = (g−1∂g)A are the same left-invariant currents constructed from a PSU(2,2|4)
SO(4,1)×SO(5)

coset as before. Note that (1.8) differs from the original AdS5 ×S5 action of (1.1) through

the (λα, λ̂bα) dependence of the first term and the absence of an ηαbαJαJ
bα

term.

To show that this topological string theory is the dual to free N = 4 super-Yang-Mills,

the first step is to show that the BRST cohomology correctly reproduces the single-trace

gauge-invariant super-Yang-Mills operators at zero ‘t Hooft coupling. Since the topolog-

ical BRST transformations are the same as in the original AdS5 × S5 model, it is trivial

to show that vertex operators for half-BPS states in the original AdS5 × S5 sigma model

are also in the BRST cohomology of the topological sigma model. Vertex operators for

non-BPS states can be constructed by acting on half-BPS vertex operators with the σ-

dependent transformation

δg(σ) = Σ(σ)g(σ) (1.9)

where Σ(σ) is an arbitrary local PSU(2, 2|4) transformation whose σ-independent modes

are the global isometries. These transformations commute with the BRST transformations

of (1.2), and when acting on operators of large R-charge, the σ-dependent modes of Σ

act like the massive string modes in a plane-wave background by inserting “impurities” in

the long operator [15]. Although the σ-dependent transformations of (1.9) do not leave

invariant the topological action of (1.8), they only change (1.8) by a BRST-trivial term.

The next step to showing that this topological string theory describes free N = 4 super-

Yang-Mills is to show that the topological string amplitudes correctly reproduce super-

Yang-Mills amplitudes in the limit of small ‘t Hooft coupling. For string tree amplitudes

involving three half-BPS states, these amplitudes are guaranteed to agree since the zero

mode measure factor in the topological theory is the same as in (1.6) and since these

three-point BPS amplitudes do not depend on the AdS radius.

To show the equivalence of other types of amplitudes, a handwaving argument based on

open-closed topological duality will be presented which will hopefully be made more rigor-

– 4 –



J
H
E
P
0
9
(
2
0
0
9
)
0
5
1

ous in the future. The argument follows the proposals of [16] and [17, 18] and uses that the

open string field theory obtained by putting D3 branes at the AdS5 boundary of the topolog-

ical string reproduces N = 4 super-Yang-Mills field theory. Furthermore, it will be argued

that perturbing the closed topological action of (1.8) by the vertex operator of (1.1) as

Stop → Stop + r2S (1.10)

is equivalent to shifting the ‘t Hooft coupling constant of the Yang-Mills theory.

In addition to providing a string dual to free super-Yang-Mills, this topological string

also describes an unbroken phase of closed superstring theory in which all background fields

(including the metric) are treated on the same footing. Up to BRST-trivial terms, the topo-

logical action of (1.8) is independent of any specific choice for the spacetime metric, which

was one of the original motivations of Witten for studying topological string theory [19–21].

To recover non-topological backgrounds, one gives expectation values to the physical mod-

uli of the topological string. For example, the AdS5 × S5 background at nonzero radius is

obtained by perturbing with the physical vertex operator of (1.1) for the radius modulus,

and other string theory backgrounds which are asymptotically AdS5 × S5 can be obtained

by perturbing with vertex operators corresponding to other physical moduli.

As in previous topological proposals of Witten for an unbroken phase of string theory,

the target spacetime in the topological sigma model requires a complex structure [20, 21].

But unlike in previous proposals, the complex structure of spacetime is now dynamical and

is determined by the pure spinor ghost variables λα and λ̂bα which choose a U(5) subgroup

of (Wick-rotated) SO(10).1 This can be seen from the kinetic term for the ten x’s in the

first term of (1.8) which, to quadratic order, is
∫

d2z(2ηλλ̂)−1(λγaγbλ̂)∂xa∂xb.

In section 2 of this paper, the pure spinor version of the AdS5 × S5 sigma model will

be reviewed. In section 3, it will be shown that non-minimal variables are unnecessary in

this model, that the zero mode measure factor and b ghost are much simpler than in a flat

background, and that a partial simplification also occurs in the Ramond-Ramond plane-

wave background. In section 4, a BRST-trivial version of the AdS5 × S5 sigma model will

be constructed by gauge-fixing a G/G principal chiral model, and this topological model

will be argued to describe the dual of free super-Yang-Mills. In section 5, conclusions and

open problems will be discussed.

2 Review of AdS5 × S
5 sigma model

The pure spinor version of the worldsheet action for the AdS5 × S5 superstring can be

derived either by constructing the pure spinor action in a general curved background [23]

and setting the background superfields to their AdS5×S5 values, or by adding terms to the

Green-Schwarz AdS5×S5 action which replace κ symmetry with BRST invariance [24]. The

second approach is more direct and will be reviewed here. The structure of supergravity

vertex operators will then be discussed.

1Similar observations on pure spinors and topological strings have been made by N. Nekrasov [22].

– 5 –



J
H
E
P
0
9
(
2
0
0
9
)
0
5
1

2.1 Green-Schwarz worldsheet action

In a general Type II supergravity background, the Green-Schwarz action is

∫
d2z

1

2
(GMN (Z)+BMN(Z))∂ZM∂ZN =

∫
d2z

1

2
(ηabE

a
M (Z)Eb

N (Z)+BMN (Z))∂ZM∂ZN

(2.1)

where ZM = (xm, θµ, θ̂bµ), EA
M (Z) is the super-vierbein, A = (a, α, α̂) are tangent-

superspace variables for a = 0 to 9 and α, α̂ = 1 to 16, and M = (m,µ, µ̂) are coordinate

variables for m = 0 to 9 and µ, µ̂ = 1 to 16, and (α, µ) and (α̂, µ̂) label spinors of the

opposite/same chirality for the Type IIA/B superstring.

In an AdS5×S5 background, the supervierbein EA
M can be explicitly constructed from

the Metsaev-Tseytlin left-invariant currents J Ã = (g−1∂g)Ã where g takes values in the

coset PSU(2, 2|4)/(SO(4, 1) × SO(5)), Ã = ([ab], a, α, α̂) ranges over the 30 bosonic and

32 fermionic elements in the Lie algebra of PSU(2, 2|4), [ab] labels the SO(4, 1) × SO(5)

“Lorentz” generators, a = 0 to 9 labels the “translation” generators, and α, α̂ = 1 to 16

label the fermionic “supersymmetry” generators. Note that Ã includes both the superspace

indices A as well as the SO(4, 1)× SO(5) indices [ab]. The PSU(2, 2|4) structure constants

f C̃
ÃB̃

include fa
αβ = γa

αβ and fa

bαbβ
= γa

bαbβ
where γa

αβ and (γa)αβ are the 16 × 16 off-diagonal

elements in the Weyl representation of the 32 × 32 ten-dimensional Γ-matrices, and γa

bαbβ

and (γa)bαbβ are related to these matrices by

γa

bαbβ
≡ ηαbαη

β bβ
(γa)αβ , (γa)bαbβ ≡ ηαbαηβ bβγa

αβ , η
αbβ

≡ (γ01234)
αbβ

, ηαbβ ≡ (γ01234)α
bβ .

(2.2)

Parameterizing the AdS5 × S5 coset as

g(Z) = exp(xmPm + θµQµ + θ̂bµQ̂bµ) (2.3)

where [Pm, Qµ, Q̂bµ] are the AdS5 × S5 translation and supersymmetry generators, one

obtains

JA = EA
M (Z)∂ZM , J [ab] = ω

[ab]
M (Z)∂ZM (2.4)

where ω
[ab]
M is the AdS5 × S5 spin connection. Furthermore, in an AdS5 × S5 background,

it was shown in [25] that the only nonzero components of BAB = EM
A EN

B BMN are

B
αbβ

= Bbβα
=

1

2
(γ01234)

αbβ
≡ 1

2
η

αbβ
. (2.5)

So the Green-Schwarz action in an AdS5 × S5 background is [3, 25]

SGS =

∫
d2z

(
1

2
ηabJ

aJ
b
+

1

4
η

αbβ
(JαJ

bβ − J
α
J

bβ)

)
. (2.6)

Note that unlike the Green-Schwarz Lagrangian in a flat background in which the

term BMN∂ZM∂ZN transforms by a total derivative under spacetime supersymmetry, the

Green-Schwarz Lagrangian in an AdS5×S5 background is manifestly PSU(2, 2|4) invariant

since it can be expressed in terms of the supersymmetric invariants JA.

– 6 –
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2.2 Pure spinor worldsheet action

To generalize the Green-Schwarz action to the pure spinor formalism, one needs to add

canonical momenta (dα, d̂bα) for the (θµ, θ̂bµ) variables as well as left and right-moving

pure spinor ghosts, (λα, wα) and (λ̂bα, ŵbα), which satisfy the pure spinor constraints

λγaλ = λ̂γaλ̂ = 0. Because of the pure spinor constraints, wα and ŵbα can only appear in

combinations which are invariant under the gauge transformations

δwα = ξa(γaλ)α, δŵbα = ξ̂a(γaλ̂)bα, (2.7)

which implies that they only appear through the Lorentz currents and ghost currents

Nab =
1

2
wγabλ, Jgh = wαλα, N̂ab =

1

2
ŵγabλ̂, Ĵgh = ŵbαλ̂bα. (2.8)

In an AdS5 × S5 background, these additional worldsheet fields couple as

S = SGS +

∫
d2z[−dαJ

α
+ d̂bαJ bα + dαd̂bβ

Fαbβ −wα(∇λ)α + ŵbα(∇λ̂)bα +RabcdN
abN̂ cd] (2.9)

where Fαbβ = (γ01234)
αbβ ≡ ηαbβ is the bispinor Ramond-Ramond field-strength, Rabcd =

∓ηa[cηd]b ≡ −η[ab][cd] is the AdS5 × S5 curvature (the − sign is if a, b, c, d are on AdS5 and

the + sign is if they are on S5), and

(∇λ)α = ∂λα +
1

2
J

[ab]
(γabλ)α, (∇λ̂)bα = ∂λ̂bα +

1

2
J [ab](γabλ̂)bα. (2.10)

Because of the nonvanishing Ramond-Ramond flux, dα and d̂bα are auxiliary fields

which can be integrated out to give the action

S =

∫
d2z

[
1

2
ηabJ

aJ
b − η

αbβ

(
3

4
J

bβJ
α

+
1

4
J

bβ
Jα

)
(2.11)

−wα∇λα + ŵbα∇λ̂bα − η[ab][cd]N
abN̂ cd

]

=

∫
d2z

[
1

2

(
ηabJ

aJ
b
+ η

αbβ
JαJ

bβ
+ η

αbβ
J

α
J

bβ

)
− 1

4
η

αbβ
(JαJ

bβ − J
α
J

bβ) (2.12)

+(−wα∇λα + ŵbα∇λ̂bα − η[ab][cd]N
abN̂ cd)

]
.

The action of (2.11) is manifestly invariant under global PSU(2, 2|4) transformations which

transform g(x, θ, θ̂) by left multiplication as δg = (ΣÃTÃ)g where TÃ are the PSU(2, 2|4)
Lie-algebra generators and is also manifestly invariant under local SO(4, 1) × SO(5) gauge

transformations which transform g(x, θ, θ̂) by right multiplication as δΛg = g(Λ[ab]T[ab])

and transform the pure spinors as SO(4, 1) × SO(5) target-space spinors.

The BRST operator in the pure spinor formalism is defined as

Q =

∫
dz λαdα +

∫
dz λ̂bαd̂bα =

∫
dz ηαbαλαJ bα +

∫
dz ηαbαλ̂bαJ

α
, (2.13)

– 7 –
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where the auxiliary equations of motion for dα and d̂bα have been used. Under BRST

transformations generated by Q, g(x, θ, θ̂) transforms by right-multiplication as

Q(g) = g(λαTα + λ̂bαTbα) (2.14)

which implies that

QJα = ∇λα − ηαbα(γaλ̂)bαJa, QJ bα = ∇λ̂bα + ηαbα(γaλ)αJa, (2.15)

QJa = (γaλ)αJα + (γaλ̂)bαJ bα, QJ [ab] =
1

2
η[ab][cd]ηαbα(J bα(γcdλ)α − Jα(γcdλ̂)bα). (2.16)

And (2.13) implies that the pure spinors transform as

Q(wα) = ηαbαJ bα, Q(ŵbα) = ηαbαJ
α
, Q(λα) = Q(λ̂bα) = 0. (2.17)

To verify that (2.11) is BRST invariant, note that the first term in the Lagrangian

of (2.12) transforms under (2.13) to

1

2
ηαbα(J bα∇λα + J

bα∇λα − Jα∇λ̂bα − J
α∇λ̂bα).

Using the Maurer-Cartan equations

∇J
bα −∇J bα = γbαbβ

a η
β bβ

(JβJ
a − J

β
Ja), ∇J

α −∇Jα = −γαβ
a η

β bβ
(J

bβJ
a − J

bβ
Ja), (2.18)

the second term in (2.12) transforms under (2.13) to

1

2
ηαbα(J bα∇λα − J

bα∇λα + Jα∇λ̂bα − J
α∇λ̂bα) (2.19)

+
1

4
ηαbα∂(J

bα
λα + J

α
λ̂bα) − 1

4
ηαbα∂(J bαλα + Jαλ̂bα).

And the last term in (2.12) transforms under (2.13) to

−ηαbα(J bα∇λα − J
α∇λ̂bα).

So ignoring the total derivatives in the second line of (2.19), (2.11) is BRST-invariant.

2.3 Nilpotent BRST transformations

Although it is consistent to use the BRST transformations of (2.14) and (2.17) which are

nilpotent up to equations of motion, it will be convenient to include auxiliary antifields in

the action so that the BRST transformations become nilpotent without using equations of

motion. As discussed in [10] and shown independently by G. Boussard [26], this is easily

done by adding the antifields w∗
α and ŵ∗

bα to the AdS5 × S5 action of (2.11) as

S → S +

∫
d2zηαbαw∗

αŵ∗
bα (2.20)

where w∗
α and ŵ∗

bα are auxiliary fermionic spinors which are constrained to satisfy

ηαbα(w∗γa)αλ̂bα = 0, ηαbα(ŵ∗γa)bαλα = 0, (2.21)
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and therefore each contain 11 independent fermionic components.

Under the BRST transformations of (2.14) and (2.17), one finds that

Q2g = −g(h[ab]T[ab]), (2.22)

Q2wα =
1

2
(γabw)αh[ab] + (λγa)αξa + ηαbα

∂L

∂ŵbα

, (2.23)

Q2ŵbα =
1

2
(γabŵ)bαh[ab] + (λ̂γa)bαξ̂a − ηαbα

∂L

∂wα
, (2.24)

where

h[ab] =
1

2
ηαbαλα(γabλ̂)bα, ξa = Ja − ηαbαwα(γaλ̂)bα, ξ̂a = −J

a
+ ηαbαŵbα(γaλ)α, (2.25)

∂L

∂ŵbα

= ∇λ̂bα− 1

2
η[ab][cd]N

ab(γcdλ̂)bα,
∂L

∂wα
= −∇λα − 1

2
η[ab][cd](γ

abλ)αN̂ cd. (2.26)

When acting on terms which are gauge-invariant with respect to the local SO(4, 1) ×
SO(5) transformations and the (w, ŵ) gauge transformations of (2.7), the terms in (2.22)

which are proportional to (h[ab], ξa, ξ̂a) can be ignored. To remove the terms in (2.22) which

are proportional to the equations of motion ∂L
∂wα

and ∂L
∂ bwbα

, one should modify the BRST

transformations of wα and ŵbα to

Qwα = ηαbαJ bα + w∗
α, Qŵbα = ηαbαJ

α
+ ŵ∗

bα, (2.27)

and define the BRST transformation of the antifields w∗
α and ŵ∗

bα as

Qw∗
α = −ηαbα

∂L

∂ŵbα

, Qŵ∗
bα = ηαbα

∂L

∂wα
.

With the addition of (2.20) to the action, one can easily check that these BRST transfor-

mation leave the action invariant and are nilpotent without using equations of motion.

2.4 Supergravity vertex operators

In a general curved supergravity background, physical closed string vertex operators in the

pure spinor formalism are defined as states of ghost-number (1, 1) which are in the BRST

cohomology. For massless supergravity states, these vertex operators only depend on the

zero modes of the worldsheet fields ZM = (xm, θµ, θ̂bµ) as

V = λαλ̂bαAαbα(ZM ). (2.28)

Under the BRST transformation generated by Q =
∫

dzλαdα +
∫

dzλ̂bαd̂bα,

QZM = λαEM
α (Z) + λ̂bαEM

bα (Z) (2.29)

where EM
A is the inverse supervierbein. So

QV = λαλ̂bα(λβEM
β + λ̂

bβEM
bβ

)∂MAαbα = (λβ∇β + λ̂
bβ∇bβ

)(λαλ̂bαAαbα) (2.30)
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where ∇A = EM
A (∂M + ω

[ab]
M M[ab]) is the covariant derivative and M [ab] are tangent-space

Lorentz generators which act on the spinor indices α and α̂. Since λγaλ = λ̂γaλ̂ = 0,

QV = 0 implies that Aαbα(Z) satisfies [27]

γαγ
abcde∇γA

αbβ
= γ

bβbγ
abcde∇bγA

αbβ
= 0 (2.31)

for any choice of [abcde]. And the gauge transformation

δV = Q(λαΩα + λ̂bαΩbα) = (λβ∇β + λ̂
bβ∇bβ

)(λαΩα + λ̂bαΩbα) (2.32)

implies that Aαbα(Z) is defined up to the gauge transformation

δAαbα = ∇αΩbα + ∇bαΩα (2.33)

where Ωα and Ωbα are restricted to satisfy

γαβ
abcde∇βΩα = γbαbβ

abcde∇bβ
Ωbα = 0 (2.34)

for any choice of [abcde].

As shown in [23], these equations of motion and gauge invariances describe an onshell

Type II supergravity multiplet. In terms of the standard supergravity superfields, Aαbα(Z)

is identified with the spinor-spinor component B
αbβ

of the two-form BAB = EM
A EN

B BMN

in the gauge where (γabcde)
αβBαβ = (γabcde)

bαbβB
bαbβ

= 0. The equations of motion of (2.31)

follow from the superfield constraints

H
αbβbγ

= Hbαβγ = 0, (γabcde)
αβTD

αβ = (γabcde)
bαbβTD

bαbβ
= TD

αbα = 0, (2.35)

where

HABC = EM
A EN

B EP
C ∂[MBNP ) = ∇[ABBC) + TD

[ABBC)D (2.36)

is the three-form field strength and TD
AB is the superspace torsion. And the gauge trans-

formations of (2.33) follow from the gauge transformations δBMN = ∂[MΩN) which imply

that δBAB = ∇[AΩB) + TC
ABΩC .

In a flat background, the constraints of (2.31) can be easily solved in terms of plane-

wave solutions as A
αbβ

(Z) = A
αbβ

(k, θ, θ̂)eikx where k2 = 0. Furthermore, the holomor-

phic structure of the sigma model implies that Aαbα(k, θ, θ̂) factorizes into Aαbα(k, θ, θ̂) =

Aα(k, θ)Abα(k, θ̂) where Aα(k, θ) is the super-Yang-Mills spinor gauge field satisfying

(γabcde)
αβDαAβ = 0 with Dα = ∂

∂θα + kmγm
αβθβ.

Unfortunately, the non-holomorphic structure of the AdS5 × S5 sigma model does

not allow a similar factorization for A
αbβ

(Z) in an AdS5 × S5 background. Nevertheless,

the fact that Bαbα has the background value of ηαbα in this background implies that the

θ = θ̂ = 0 component of ηαbαAαbα(Z) is the dilaton. The other components of Aαbα(Z) can

be determined by acting with supersymmetry on the dilaton.
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3 Simplifying the AdS5 × S5 formalism

In this section, it will be explained that since (ηαbαλαλ̂bα) is in the BRST cohomology in an

AdS5 × S5 background, there is no need to introduce the non-minimal variables which are

necessary in a flat background to regularize the functional integral over the pure spinors.

This simplifies the zero mode measure factor and b ghost in an AdS5×S5 background, and

a partial simplification will also occur in the Ramond-Ramond plane-wave background.

3.1 BRST cohomology and extended Hilbert space

To show that (ηλλ̂) is in the BRST cohomology in an AdS5 × S5 background, note that

the surface term in (2.19) implies that

QLAdS = ∂f − ∂f (3.1)

where LAdS is the Lagrangian of (2.11) and

f =
1

4
ηαbα(λαJ bα + λ̂bαJα), f =

1

4
ηαbα(λαJ

bα
+ λ̂bαJ

α
). (3.2)

Furthermore, since the BRST transformations of (2.14) and (2.27) are nilpotent, (3.1)

implies that Qf = ∂V and Qf = ∂V for some V . One can easily check for f and f of (3.2)

that V = 1
4ηαbαλαλbα.

Since this procedure relates dimension (1, 1) integrated vertex operators and dimen-

sion (0, 0) unintegrated vertex operators, V = (ηλλ̂) is the unintegrated vertex operator

associated with the AdS5×S5 Lagrangian. And since the AdS5 radius which multiplies the

Lagrangian is a physical modulus, (ηλλ̂) must be in the BRST cohomology. Note that in

a flat background, the analogous procedure using the flat worldsheet Lagrangian produces

the physical unintegrated vertex operator V = (λγmθ)(λ̂γmθ̂).

Since (ηλλ̂) is in the BRST cohomology, it is consistent to impose the constraint

that (ηλλ̂) is non-vanishing. If λα and ηαbαλ̂bα are interpreted as complex conjugates, this

constraint implies that at least one component of λα must be nonzero. In the presence

of this constraint, the Hilbert space can be extended to include states which depend on

inverse powers of (ηλλ̂).

As mentioned in the introduction, such an extension of the Hilbert space in a flat

background would trivialize the BRST cohomology since it would allow the state W =

(ηλλ̂)−1(η
β bβ

θβλ̂
bβ) which satisfies QW = 1. But since (ηλλ̂) is not BRST-trivial, there is

no such W satisfying QW = 1 that can be constructed in an AdS5 × S5 background.

3.2 b ghost

Since [Q,T ] = 0 where

T =
1

2
ηabJ

aJb + ηαbαJαJ bα − wα∇λα (3.3)

is the left-moving stress tensor, one can ask if there exists an operator b satisfying

{Q, b} = T . Before extending the Hilbert space to include inverse powers of (ηλλ̂), such an

– 11 –
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operator does not exist. This situation is analogous to the situation in a flat background

where, before introducing non-minimal fields, one cannot construct an operator b satisfying

{Q, b} = Tflat where Tflat = 1
2∂xm∂xm − pα∂θα − wα∂λα.

However, after extending the Hilbert space to include inverse powers of (ηλλ̂), the b

operator can be defined as

b = (ηλλ̂)−1λ̂bα

[
1

2
γ

abαbβ
JaJ

bβ +
1

4
(γab)bα

bβη
β bβ

NabJβ +
1

4
ηαbαJghJα

]
. (3.4)

Note that (3.4) resembles the first term of the b ghost in a flat background which is [28]

bflat = (λαλα)−1λα

[
1

2
γαβ

m Πmdβ +
1

4
(γmn)β

αNmn∂θβ +
1

4
Jgh∂θα

]
+ · · · (3.5)

where λα is a non-minimal field and . . . includes terms with more complicated dependence

on the non-minimal fields.

To show that {Q, b} = T , use (2.14) to compute that

Qb = (ηλλ̂)−1

[
1

2
(ηλλ̂)ηabJ

aJb +
1

2
(λγa)αJα(λ̂γa)bαJ bα (3.6)

+
1

4
λ̂bα(γab)bα

bβη
β bβ

Nab∇λβ +
1

8
(J bα(γab)bα

bβη
β bβ

λβ)(λ̂bγ(γab)bγ
bδη

δbδ
Jδ)

+
1

4
(ηαbαλαJ bα)(η

β bβ
λ̂

bβJβ) +
1

4
(ηαbαλ̂bα∇λα)Jgh

]

=
1

2
ηabJ

aJb + ηαbαJαJ bα − wα∇λα

where the identity

δδ
αδγ

β =
1

2
(γa)αβ(γa)

γδ − 1

8
(γab)α

γ(γab)β
δ − 1

4
δγ
αδδ

β (3.7)

has been used and terms proportional to w∗
α have been dropped since they vanish onshell.

Note that normal-ordering terms are being ignored, so one only needs to use (2.14) to

derive (3.6). Furthermore, note that

−wα∇λα =
1

4
(ηλλ̂)−1[λ̂bα(γab)bα

bβη
β bβ

Nab∇λβ + (ηαbαλ̂bα∇λα)Jgh]

using (3.7) and λγa∇λ = 0. One can similarly define b satisfying {Q, b} = T where

T = 1
2ηabJ

a
J

b
+ ηαbαJ

α
J

bα
+ ŵbα∇λ̂bα and

b = (ηλλ̂)−1λα

[
− 1

2
γaαβJ

a
J

β − 1

4
(γab)α

βη
β bβ

N̂abJ
bβ − 1

4
ηαbαĴghJ

bα
]
. (3.8)

Note that b is not holomorphic but ∂b is BRST-trivial. The g-loop amplitude prescrip-

tion in the pure spinor formalism is given by

Ag =

∫
d3g−3τ

∫
d3g−3τ〈

(∫
µb

)3g−3( ∫
µb

)3g−3 N∏

r=1

∫
d2zrUr(zr)〉 (3.9)
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where Ur are the dimension (1, 1) integrated vertex operators and µ and µ are the Beltrami

differentials associated with the Teichmuller parameters τ and τ . One normally requires

∂b = 0 so that (
∫

µb) is invariant under transformations that shift µ by ∂ν for any ν.

However, assuming that BRST-trivial terms in the integrand do not contribute, it seems

to be sufficient to only require that ∂b is BRST-trivial.

3.3 Functional integration and measure factor

In a flat background, functional integration over the 22 zero modes of λα and λ̂bα

produces a divergent factor since these bosonic zero modes are non-compact. The most

convenient method for regularizing this divergence is to introduce “non-minimal” variables

λα and λ̂bα, together with their BRST superpartners rα and r̂bα, and to modify the

BRST operator to [4, 5, 29]

Qnon−min =

∫
dz(λαdα + rαwα) +

∫
dz(λ̂bαd̂bα + r̂bαŵ

bα
) (3.10)

where wα and ŵ
bα

are the conjugate momenta for λα and λ̂bα and the non-minimal variables

satisfy the constraints

λγmλ = λγmr = λ̂γmλ̂ = λ̂γmr̂ = 0. (3.11)

One then inserts the regulator

N = exp[−ρ Q(θαλα + θ̂bαλ̂bα)] = exp[−ρ(λαλα + λ̂bαλ̂bα − θαrα − θ̂bαr̂bα)] (3.12)

into the functional integral where ρ is a positive constant. Since N −1 is BRST-trivial, the

amplitude must be independent of the constant ρ and the location of N . Treating λα and

λ̂bα as the complex conjugates of λα and λ̂bα, the insertion of N regularizes the functional

integration over the pure spinor ghost zero modes because of its Gaussian dependence

on λ. As shown in [4], functional integration using this regularization method in a flat

background implies that

〈f(x, θ, λ, θ̂, λ̂)〉 =

∫
d10x

∫
d11λd11λ̂d11λd11λ̂

∫
d16θd16θ̂d11rd11r̂ N f(x, θ, λ, θ̂, λ̂)

=

∫
d10x

∫
(d5θ)α1...α5

(d5θ̂)bα1...bα5
(3.13)

(
γm ∂

∂λ

)α1
(

γn ∂

∂λ

)α2
(

γp ∂

∂λ

)α3

(γmnp)
α4α5

(
γq ∂

∂λ̂

)bα1
(

γr ∂

∂λ̂

)bα2
(

γs ∂

∂λ̂

)bα3

(γqrs)
bα4 bα5

f(x, θ, λ, θ̂, λ̂)
θ=bθ=0

where f(x, θ, λ, θ̂, λ̂) is assumed to have ghost-number (3, 3) and be independent of the

non-minimal fields. Note that (3.11) implies that rα and r̂bα each have 11 independent

components, and integration over these components reduces the
∫

d16θd16θ̂ integral to∫
d5θd5θ̂ because of the rα and r̂bα dependence in N .
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In an AdS5 × S5 background, the fact that (ηλλ̂) is in the BRST cohomology allows

one to treat λα and ηαbαλ̂bα as complex conjugates instead of introducing non-minimal

variables. Although the zero mode integral
∫

d11λd11λ̂ diverges because of the scale factor

in λ, one can easily regularize this divergence by restricting the zero modes of λα and λ̂bα

to satisfy (ηλλ̂) = Λ for some positive constant Λ. Since (ηλλ̂) is BRST-invariant, this

regularization preserves BRST invariance. Furthermore, since the ghost-number anomaly

implies that genus g amplitudes violate ghost-number by (3 − 3g, 3 − 3g), the dependence

on Λ can be absorbed by shifting the string coupling constant from eφ to eφ′

= Λ− 3
2 eφ. In

other words, the factor of e(2g−2)φ′

= Λ3−3ge(2g−2)φ at genus g includes the Λ dependence.

With this regularization, the zero mode integration for tree amplitudes simplifies to

〈f(x, θ, λ, θ̂, λ̂)〉 =

∫
d10x

∫
d16θd16θ̂ sdet(EA

M )

∫
d10λd10λ̂ f(x, θ, λ, θ̂, λ̂) (3.14)

where sdet(EA
M ) is the superdeterminant of the AdS5 ×S5 supervierbein and

∫
d10λd10λ̂ is

an integral over the projective pure spinors which (after Wick rotation) parameterize the

compact space SO(10)
U(5) . For example, for three-point supergravity tree amplitudes,

f = (λαλ̂bαA
(1)
αbα

(Z))(λαλ̂bαA
(2)
αbα

(Z))(λαλ̂bαA
(3)
αbα

(Z)) (3.15)

where λαλ̂bαAαbα(Z) is the supergravity vertex operator of (2.28). Integrating over the

projective pure spinors gives

∫
d10λ

∫
d10λ̂ f = T ((αβγ))((bα bβbγ))A

(1)
αbα

(Z)A
(2)

β bβ
(Z)A

(3)
γbγ

(Z) (3.16)

where T ((αβγ))((bα bβbγ)) is the constant tensor obtained by symmetrizing ηαbαηβ bβηγbγ with re-

spect to (αβγ) and (α̂β̂γ̂) and removing the gamma-matrix trace terms, i.e. removing the

terms proportional to γαβ
m or γbαbβ

m .

So the onshell three-point tree amplitude in an AdS5×S5 background is claimed to be

∫
d10x

∫
d16θd16θ̂ sdet(EA

M ) T ((αβγ))((bα bβbγ))A
(1)
αbα

(Z)A
(2)

β bβ
(Z)A

(3)
γbγ

(Z). (3.17)

It might seem surprising that the zero mode integration in an AdS5 × S5 background

selects the term in (Aαbα)3 with 16 (θθ̂)’s whereas the zero mode integration in a flat

background selects the term in (Aαbα)3 with 5 (θθ̂)’s. However, note that three-point

amplitudes in an AdS5×S5 background can be computed as a sum over N -point amplitudes

in a flat background where (N − 3) of the vertex operators deform the flat background to

AdS5 × S5. If 11 of the extra vertex operators are Ramond-Ramond vertex operators

containing the term
∫

d2zFαbαdαd̂bα, one could contract 11 (θθ̂)’s in (Aαbα)3 with these

vertex operators and convert the flat zero-mode measure factor into the AdS5×S5 measure

factor. So the
∫

d2zFαbαdαdbα term in the AdS5 × S5 action of (2.9) plays the same role

as the exp[ρ(θαrα + θ̂bαr̂bα)] term in the regulator of (3.12) which absorbs 11 (θθ̂)’s after

integrating over
∫

d11r
∫

d11r̂.
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A separate argument for the validity of the integration measure of (3.14) is that it is

manifestly PSU(2, 2|4) invariant since it can be written as

〈f(x, θ, λ, θ̂, λ̂)〉 =

∫
Dg

∫
d10λd10λ̂ f(g, λ, λ̂) (3.18)

where g is the PSU(2,2|4)
SO(4,1)×SO(5) coset and Dg is the corresponding Haar measure. For three-

point supergravity amplitudes in an AdS5×S5 background, PSU(2, 2|4) invariance together

with gauge invariance is expected to completely fix the amplitude up to an overall constant.

This is analogous to the statement that the three-point supergravity amplitude in a

flat background is completely fixed by super-Poincaré invariance and gauge invariance. In

a flat background, the expression
∫

d10x
∫

d16θ
∫

d16θ̂(λλ̂A)3 would vanish by dimensional

arguments since it carries 11 too many factors of momentum and since kr ·ks = 0 for on-shell

three-point amplitudes. For this reason, the correct measure factor in a flat background

involves an integration over only 5 (θθ̂)’s. But in an AdS5 × S5 background, there is no

such dimensional argument since the expression
∫

d10x
∫

d16θ
∫

d16θ̂(λλ̂A)3 can depend on

inverse powers of the AdS radius as (rAdS)−11. So assuming that (3.17) does not vanish

for some unknown reason, PSU(2, 2|4) invariance implies that it must be proportional to

the correct three-point supergravity amplitude in an AdS5 × S5 background.

In some sense, the above definition of the integration measure for pure spinors in

an AdS5 × S5 background is more natural than the corresponding definition in a flat

background. Since the left and right-moving pure spinors are complex variables, it is

natural (on a two-dimensional Euclidean worldsheet) to identify the right-moving pure

spinor as the complex conjugate of the left-moving pure spinor so that the action is real.

But as explained above, this identification is insufficient in a flat background for defining

a regularized path integral since (λλ̂) is BRST-trivial. So one is forced to introduce left

and right-moving non-minimal variables to regularize the path integral. However, in an

AdS5 × S5 background, identification of the left and right-moving pure spinor variables as

complex conjugates allows one to define functional integration in the standard way without

requiring non-minimal variables.

For amplitudes at non-zero genus, the prescription in the pure spinor formalism is to

insert (3g−3) b and b ghosts and N integrated vertex operators into the functional integral

as in (3.9). After integrating out the non-zero modes of the worldsheet fields, one needs to

integrate over both the zero modes of (x, θ, θ̂, λ, λ̂) and the g zero modes of the spin-one

variables wα and ŵbα. In a flat background, integration over the zero modes of wα and ŵbα

produces divergences which are regularized by including the term [4, 5]

exp

[
ρ Q

(
1

2
(λγabs)Nab +

1

2
(λ̂γabŝ)N̂ab

)]
(3.19)

= exp

[
− ρ

(
NabNab + N̂abN̂ab −

1

4
(λγabs)(λγabd) − 1

4
(λ̂γabŝ)(λ̂γabd̂)

)]

in the regulator N of (3.12) where Nab and N̂ab are the Lorentz currents for the

non-minimal variables and (sα, ŝbα) are the conjugate momenta for (rα, r̂bα). However, in

– 15 –



J
H
E
P
0
9
(
2
0
0
9
)
0
5
1

an AdS5 × S5 background, the worldsheet action of (2.9) already contains exp(−NabN̂ab)

dependence because of the AdS5 × S5 curvature which couples the left and right-moving

Lorentz currents. So the curvature of the AdS5 × S5 background acts as a regulator

for the (wα, ŵbα) zero mode integration and eliminates the need for the non-minimal

regulator N of (3.19).

It should be noted that because of the non-holomorphic structure of the sigma model,

the measure factor for open string scattering amplitudes in AdS5 × S5 will not be the

“holomorphic square-root” of the closed string measure factor of (3.14). For example, for

D3 branes at the boundary of AdS5, the boundary condition λ̂bα = (γ0123)
bα
βλβ implies that

λγ01234λ̂ = λγ4λ = 0 because of the pure spinor constraint λγaλ = 0. So one cannot

impose that (ηλλ̂) = 0 on the D3 brane boundary.

To regularize the functional integral over pure spinors in the presence of D3 branes,

one therefore needs to introduce the same non-minimal variables (λα, rα) on the boundary

as one would introduce in a flat background. After inserting the non-minimal regulator

N = exp[−ρ(λαλα − θαrα)] on the boundary and integrating over the non-minimal fields,

the zero mode measure factor for open string amplitudes will involve integration over only

5 θ’s. This is expected since open string amplitudes on AdS5 × S5 describe N = 4 d = 4

super-Yang-Mills amplitudes which, like d = 10 super-Yang-Mills amplitudes, are naturally

expressed in pure spinor superspace as integrals over 5 θ’s [30, 31].

3.4 Ramond-Ramond plane-wave background

It is instructive to compare the structure of the zero-mode measure factors in flat

and AdS5 × S5 backgrounds with the zero-mode measure factor in a Ramond-Ramond

plane-wave background. The pure spinor action in this background was described in [6]

and has the same structure as (2.9) except that the non-vanishing components of Fαbβ and

Rabcd take the values

Fαbβ =
1

240
Fmnpqrγαbβ

mnpqr = (γ−1234)
αbβ, R+j+k = δjk (3.20)

where x± = x0 ± x9 and j = 1 to 8 denote the transverse directions.

Splitting dα and d̂bα into their SO(8) components as

dA = (γ+γ−d)A, dA′ = (γ−γ+d)A′ , d̂ bA
= (γ+γ−d̂) bA

, d̂ bA′
= (γ−γ+d̂) bA′

(3.21)

where A,A′ = 1 to 8, the term dαFαbβ d̂bβ
in (2.9) implies that dA and d̂ bA

are auxiliary

variables which can be integrated out. But the variables dA′ and d̂ bA′
are propagating and

couple to θA′

= (γ−γ+θ)A
′

and θ̂
bA′

= (γ−γ+θ̂)
bA′

through the first-order action
∫

d2z[dA′∂θA′

+ d̂ bA′
∂θ̂A′

]. (3.22)

In this plane-wave background, the operator ηαbαλαλbα of (1.3) is replaced by λγ+1234λ̂ =

η
A bA

λAλ̂
bA where η

A bA
≡ (σ1234)

A bA
is constructed from the SO(8) Pauli matrices σj

AA′ and

λA = (γ+γ−λ)A, λA′

= (γ−γ+λ)A
′

, λ̂
bA = (γ+γ−λ̂)

bA, λ̂
bA′

= (γ−γ+λ̂)
bA′

. (3.23)
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Since η
A bA

λAλ̂
bA is in the BRST cohomology, one can treat η

A bA
λ̂

bA as the complex

conjugate of λA and impose the constraint that η
A bA

λAλ̂
bA is non-vanishing.

This resolves the problem of functional integration over λA and λ̂
bA, but one still needs

to regularize the functional integration over the remaining components λA′

and λ̂
bA′

which

are SO(8) pure spinors since they satisfy the constraint

λA′

λA′

= λ̂
bA′

λ̂
bA′

= 0 (3.24)

coming from the condition λγ+λ = λ̂γ+λ̂ = 0. This regularization can be performed by

introducing non-minimal fields λA′ and λ̂ bA′
and their BRST superpartners rA′ and r̂ bA′

which satisfy the constraints

λA′λA′ = λA′rA′ = λ̂ bA′
λ̂ bA′

= λ̂ bA′
r̂ bA′

= 0. (3.25)

One then adds the term
∫

dzrA′wA′

+
∫

dzr̂ bA′
ŵ

bA′

to the BRST operator and defines

the non-minimal regulator as

N = exp
[
−ρ Q

(
θA′

λA′ +θ̂
bA′

λ̂ bA′

)]
= exp

[
−ρ

(
λA′

λA′−θA′

rA′+λ̂
bA′

λ̂ bA′
−θ̂

bA′

r̂ bA′

)]
(3.26)

Since there are seven independent rA′ and r̂ bA′
variables, the zero mode integration in

a plane-wave background is of the form

〈f(x, θ, λ, θ̂, λ̂)〉 =

∫
d10x

∫
d11λd11λ̂d7λd7λ̂

∫
d16θd16θ̂d7rd7r̂ N f(x, θ, λ, θ̂, λ̂) (3.27)

=

∫
d10x

∫
d8θA

∫
d8θ̂

bA

∫
dλdλ̂

∫
dθA′

∂

∂λA′

∫
dθ̂ bA′

∂

∂λ̂ bA′

f(x, θ, λ, θ̂, λ̂)|
θ=bθ=0

where the integration
∫

dλdλ̂ is over the projective part of λA and λ̂
bA (keeping η

A bA
λAλ̂

bA

fixed). So instead of selecting the term in f with 5 (θθ̂)’s or 16 (θθ̂)’s, the zero mode

measure factor in a plane-wave background selects the term in f with 9 (θθ̂)’s.

Although this result may seem strange, it is consistent with the expectation from light-

cone gauge analysis. In light-cone gauge, the supergravity vertex operator in a plane-wave

background depends only on the transverse zero modes and has the form [15]

Φ = f(a†j, s
†
A)|0〉 (3.28)

where a†j and s†A are 8 bosonic and 8 fermionic operators constructed from the zero modes

which “excite” the ground-state wavefunction |0〉 of the harmonic oscillator for the massive

zero modes. In terms of the zero modes (xj , θA, θ̂
bA), the Lagrangian is

1

2
ẋj ẋj +

i

2
k+(θAθ̇A + θ̂

bA ˙̂
θ

bA) − (k+)2
(

1

2
xjxj + iη

A bA
θAθ̂

bA

)
(3.29)

and the ground-state wavefunction is

|0〉 = |4πk+|−2 exp

(
− |k+|

(
1

2
xjxj + iη

A bA
θAθ̂

bA

))
(3.30)
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where k+ is the P+ momentum of the state.

In light-cone gauge, the measure factor 〈Φ1|Φ2〉LC can be computed either by using the

commutation relations of the operators in (3.28) or by evaluating the functional integral

〈Φ1|Φ2〉LC =

∫
d8x

∫
d8θ

∫
d8θ̂ Φ1(x

j , θA, θ̂
bA) Φ2(x

j , θA, θ̂
bA). (3.31)

Note that |0〉 has a well-defined norm since

〈0|0〉LC =

∫
d8x

∫
d8θ

∫
d8θ̂|4πk+|−4e−|k+|(xjxj+2iη

A bA
θAbθ

bA) = 1. (3.32)

The covariant measure factor of (3.27) can be compared with the light-cone measure

factor of (3.31) using the relation that 〈V1|c0c0|V2〉 should be proportional to 〈Φ1|Φ2〉LC

where V is the BRST-invariant vertex operator of ghost-number (1, 1) corresponding to the

light-cone vertex operator Φ, and c0 and c0 are operators satisfying {b0, c0} = {b0, c0} = 1.

The factors of c0 and c0 come from BRST gauge-fixing and are necessary for the covariant

measure factor to have ghost-number (3, 3).

In a plane-wave background, the BRST-invariant vertex operator corresponding to the

light-cone field Φ(xj , θA, θ̂
bA) is

V = λαλ̂bαAαbα(x, θ, θ̂) = (η
A bA

λAλ̂
bA)Φ(xj , θA, θ̂

bA)eik+x−+ik−x+

+ · · · (3.33)

where Φ is the light-cone superfield of (3.28) and . . . depends on θA′

and θ̂
bA′

and is de-

termined by BRST invariance. Furthermore, since the b and b ghosts in the pure spinor

formalism have the term

b = (λA′λA′

)−1∂x+(λγ−d) + · · · , b = (λA′λA′

)−1∂x+(λ̂γ−d̂) + · · · , (3.34)

one can define c0 and c0 satisfying {b0, c0} = {b0, c0} = 1 as

c0 = [(∂x+)−1λA′

θA′

]0 = (k+)−1λA′

θA′

, c0 = [(∂x+)−1λ̂A′

θ̂A′

]0 = (k+)−1λ̂
bA′

θ̂
bA′

. (3.35)

So the covariant measure factor of (3.27) implies that

〈V1|c0c0|V2〉 =

∫
d10x

∫
d8θA

∫
d8θ̂

bA

∫
dλdλ̂

∫
dθA′

∂

∂λA′

∫
dθ̂ bA′

∂

∂λ̂ bA′

(3.36)

(η
A bA

λAλ̂
bA)2 Φ1Φ2 (k+)−2(λA′

θA′

)(λ̂
bA′

θ̂
bA′

)ei(k+
1 +k+

2 )x−+i(k−

1 +k−

2 )x+

= (k+)−2δ(k+
1 + k+

2 )δ(k−
1 + k−

2 )

∫
d8x

∫
d8θA

∫
d8θ̂

bA Φ1Φ2,

which is proportional to the light-cone measure factor 〈Φ1|Φ2〉LC of (3.31).

So in a plane-wave background, the covariant measure factor involving integration over

9 (θθ̂)’s is related to light-cone integration over 8 (θθ̂)’s plus an additional integration over

θθ̂ coming from the c0c0 term. In a flat background, the covariant measure factor of (3.13)

involving integration over 5 (θθ̂)’s can be similarly related to light-cone integration over 4

(θθ̂)’s plus an integration over θθ̂ coming from the c0c0 term. In light-cone gauge in a flat
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background, the fermionic zero modes are massless and in order to construct normalizable

wavefunctions, the SO(8) components θA and θ̂A need to be split into U(4) components as

(θI , θI) and (θ̂
bI , θ̂bI

) for I, Î = 1 to 4 [32]. The resulting light-cone wavefunction is a chiral

superfield Φ(θI , θ̂
bI) satisfying the reality condition

DIDJD̂bI
D̂ bJ

Φ =
1

4
ǫIJKLǫbI bJ bK bL

D
K

D
L
D̂

bK

D̂
bL

Φ, (3.37)

and the light-cone measure factor in a flat background is

〈Φ1|Φ2〉LC =

∫
d8x

∫
d4θI

∫
d4θ̂

bI Φ1Φ2 (3.38)

which involves an integration over only 4 (θθ̂)’s.

4 Topological AdS5 × S5 sigma model

In this section, a BRST-trivial action will be constructed with the same BRST operator and

stress-tensor as the AdS5×S5 action of (2.11), and will be shown to arise from gauge-fixing

the G/G principal chiral model where G = PSU(2, 2|4). This topological action will then

be argued to describe the zero-radius limit of AdS5 × S5 by comparing its physical states

with the spectrum of gauge-invariant operators of free N = 4 d = 4 super-Yang-Mills. A

handwaving argument based on open-closed topological duality will then be proposed for

showing that the scattering amplitudes of this topological string coincide with super-Yang-

Mills scattering amplitudes in the limit of small ‘t Hooft coupling constant.

4.1 Topological action

Because of the possibility of including (ηλλ̂)−1 dependence in the action, one can construct

a BRST-trivial action which has the same stress tensor as the AdS5 × S5 action of (2.11).

This topological action is

Stop =

∫
d2z Q(Ψ) (4.1)

=

∫
d2z

[
ηαbα(γaλ)α(γbλ̂)bα

2(ηλλ̂)
JaJ

b
+ηαbαJ

α
J bα−wα∇λα+ŵbα∇λ̂bα−η[ab][cd]N

abN̂ cd+ηαbαw∗
αŵ∗

bα

]

where

Ψ =
1

2
(ηλλ̂)−1λ̂bα

(
1

2
γ

abαbβ
J

a
J

bβ +
1

4
(γab)

bβ
bα
η

β bβ
NabJ

β
+

1

4
ηαbαJghJ

α
)

(4.2)

+
1

2
(ηλλ̂)−1λα

(
− 1

2
γaαβJaJ

β − 1

4
(γab)

β
αη

β bβ
N̂abJ

bβ − 1

4
ηαbαĴghJ bα

)

+
1

2
ηαbα(wαŵ∗

bα − w∗
αŵbα).

Note the close resemblence of the first two lines in Ψ with the b and b ghost of (3.4) and (3.8),

and that the last line of Ψ is gauge-invariant under (2.7) because of the constraints of (2.21).
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Since Q is nilpotent, (4.1) is invariant under the BRST transformation of (2.14) and (2.27)

and the resulting Noether charge is

Q =

∫
dzηαbαλαJ bα +

∫
dzηαbαλ̂bαJ

α
(4.3)

as before.

Using the identity of (3.7) and the BRST transformations of (2.14) and (2.27), it is

straightforward to show that QΨ is equal to the Lagrangian of (4.1). The BRST transfor-

mation of the first line of (4.2) is

1

2

[
ηαbα(γaλ̂)bα(γbλ)α

2(ηλλ̂)
J

a
Jb +ηαbαJ

α
J bα −wα∇λα +

1

8(ηλλ̂)
((w∗γabλ)(λ̂γabJ)+2(w∗λ)(λ̂J))

]
,

(4.4)

the BRST transformation of the second line of (4.2) is

1

2

[
ηαbα(γaλ)α(γbλ̂)bα

2(ηλλ̂)
JaJ

b
+ηαbαJ

α
J bα + ŵbα∇λ̂bα− 1

8(ηλλ̂)
((ŵ∗γabλ̂)(λγabJ)+2(ŵ∗λ̂)(λJ))

]
,

(4.5)

and the BRST transformation of the third line of (4.2) is

1

2
[2ηαbαw∗

αŵ∗
bα + w∗

αJ
α − ŵ∗

bαJ bα − wα∇λα + ŵbα∇λ̂bα − 2η[ab][cd]N
abN̂ cd]. (4.6)

It is interesting to note that the difference between the topological and AdS5 × S5

actions of (4.1) and (2.11) is

Stop − SAdS5×S5 =

∫
d2z

[
ηαbα(γaλ)α(γbλ̂)bα

4(ηλλ̂)
(JaJ

b − J
a
Jb) +

1

4
η

αbβ
(JαJ

bβ − J
α
J

bβ)

]
, (4.7)

where the pure spinors (λα, λ̂bα) choose a complex structure which allows the covariant

construction of a Wess-Zumino term from the bosonic currents (Ja, J
a
). Using λγaλ =

λ̂γaλ̂ = 0 and the BRST transformation of (2.14), one can easily check that (4.7) is BRST-

closed. And since (4.7) is antisymmetric in z and z, it is clear that the stress tensor of Stop

is equal to the AdS5 × S5 stress tensor of (3.3).

One can formally define an analogous topological action in a flat Type II background as

Sflat
top =

∫
d2z Q(Ψflat) (4.8)

=

∫
d2z

[
ηαbα(γaλ)α(γbλ̂)bα

2(ηλλ̂)
ΠaΠ

b − dα∂θα + d̂bα∂θ̂bα − wα∂λα + ŵbα∂λ̂bα + ηαbαw∗
αŵ∗

bα

]

where Πa = ∂xa + θγa∂θ + θ̂γa∂θ̂, ηαbα is a constant bispinor, and

Ψflat =
1

2
(ηλλ̂)−1λ̂bαηαbα

(
1

2
γαβ

a Π
a
dβ +

1

4
(γab)

α
βNab∂θβ +

1

4
Jgh∂θα

)
(4.9)

+
1

2
(ηλλ̂)−1λαηαbα

(
− 1

2
γbαbβ

a Πad̂bβ
− 1

4
(γab)

bα
bβ
N̂ab∂θ̂

bβ − 1

4
Ĵgh∂θ̂bα

)

+
1

2
ηαbα(wαŵ∗

bα − w∗
αŵbα).
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The choice of ηαbα breaks Lorentz invariance for the Type IIB superstring, but for the

Type IIA superstring, Lorentz invariance can be preserved by choosing ηαbα = δαbα. Note

that unlike the usual pure spinor action in a flat background, the topological action Sflat
top

is manifestly spacetime supersymmetric and satisfies

Sflat
top − Sflat =

∫
d2z

[
ηαbα(γaλ)α(γbλ̂)bα

4(ηλλ̂)
(ΠaΠ

b − Π
a
Πb) − LWZ

]
(4.10)

where LWZ is the standard Green-Schwarz Wess-Zumino term. However, unlike the topo-

logical AdS5 × S5 action of (4.1), the topological action of (4.8) in a flat background is

not well-defined since inverse powers of (ηλλ̂) are not allowed in the flat Hilbert space. As

emphasized in section 3, the presence of inverse powers of (ηλλ̂) in a flat background would

trivialize the BRST cohomology.

4.2 G/ G principal chiral model

In [9] and [10], an A-twisted N = 2 worldsheet supersymmetric sigma model constructed

from the fermionic coset PSU(2,2|4)
SO(4,2)×SO(6) was conjectured to describe the zero-radius limit of

the AdS5×S5 superstring. This topological sigma model was related by a field redefinition

to the AdS5 × S5 sigma model of (2.11), but the BRST operators for the topological and

AdS5×S5 sigma models were different. It was then shown in [11] that this N = 2 worldsheet

supersymmetric sigma model constructed from the fermionic coset PSU(2,2|4)
SO(4,2)×SO(6) could be

obtained by gauge-fixing the G/G principal chiral model

S = Str

∫
d2z(G−1∂G − A)(G−1∂G − A) =

∫
d2z ηÃB̃ (J Ã − AÃ)(J

B̃ − A
B̃

) (4.11)

where G takes values in PSU(2, 2|4), J = G−1∂G are the left-invariant currents, ηÃB̃ is the

PSU(2, 2|4) metric, and (A,A) is a worldsheet gauge field taking values in the PSU(2, 2|4)
Lie algebra. Although this G/G model appears to be trivial, it will be argued later that

it contains non-trivial physical states because of boundary conditions on the non-compact

PSU(2, 2|4) generators.

The action of (4.11) is invariant under the local PSU(2, 2|4) gauge transformations

δG = GΩ, δA = dΩ + [A,Ω], (4.12)

and to obtain the supersymmetric sigma model based on the fermionic coset, one first uses

the SO(4, 2) × SO(6) generators of Ω to gauge away the bosonic elements in G so that G

takes values in the fermionic coset PSU(2,2|4)
SO(4,2)×SO(6) . One then uses the fermionic generators

of Ω to gauge-fix

Aα+ ≡ Aα + iAbα = 0, A
α− ≡ A

α − iA
bα

= 0, (4.13)

where Tα+ ≡ Tα + iTbα are the 16 fermionic generators in the upper-right square of

PSU(2, 2|4) and Tα− ≡ Tα − iTbα are the 16 fermionic generators in the lower-left square of

PSU(2, 2|4).
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This fermionic gauge-fixing gives rise to bosonic ghosts (Zα−, Z
α+

) and antighosts

(Yα−, Y α+) with the Faddeev-Popov action

Sgh =

∫
d2z[−Yα−∇Zα− + Y α+∇Z

α+
] (4.14)

and the BRST operator

Q =

∫
dzηαβZα−Jβ+ +

∫
dzηαβZ

β+
J

α−
(4.15)

where ηαβ = (γ01234)αβ . Note that Q2 = 0 without imposing pure spinor constraints

on Zα− and Z
α+

because Tα+ and Tα− satisfy {Tα+, Tβ+} = {Tα−, Tβ−} = 0. In this

gauge, the action of (4.11) reduces to an A-twisted N = 2 worldsheet supersymmetric

sigma model where (Zα−, Z
α+

, Yα−, Y α+) are the bosonic worldsheet superpartners to the

fermionic coset PSU(2,2|4)
SO(4,2)×SO(6) and (4.15) is the scalar worldsheet supersymmetry generator.

Although the BRST operator of (4.15) in this gauge-fixing is different from the original

AdS5 × S5 BRST operator of (2.13), it will now be shown that there is an alternative

gauge-fixing of the G/G model of (4.11) which leads to the topological action of (4.1) and

which has the same BRST operator as (2.13). To obtain the topological action of (4.1)

from (4.11), one first uses the local SO(4, 1)×SO(5) gauge invariances of (4.12) to gauge-fix

G to take values in the Metsaev-Tseytlin coset PSU(2,2|4)
SO(4,1)×SO(5) . One next uses the fermionic

gauge transformations of (4.12) to gauge-fix

Abα = 0, A
α

= 0, (4.16)

which gives rise to unconstrained bosonic ghosts (Zα, Z
bα
) and antighosts (Yα, Y bα) with

the Faddeev-Popov action

Sgh =

∫
d2z[−Yα∇Zα + Y bα∇Z

bα
] (4.17)

where ∇Zα = ∂Zα + 1
2A

[ab]
(γ[ab]Z)α and ∇Z

bα
= ∂Z

bα
+ 1

2A[ab](γ[ab]Z)bα. Since {Tα, Tβ}
and {Tbα, Tbβ

} are nonzero and Zα and Z
bα

are unconstrained, the BRST operator

Q =

∫
dzηαbαZαJ bα +

∫
dzηαbαZ

bα
J

α
(4.18)

implied by this gauge-fixing would not be nilpotent.

However, one still has ten bosonic gauge transformations of (4.12) which need to be

gauge-fixed. Although one could naively use these gauge transformations to gauge away

the remaining bosonic components of G, this will be argued later to be inconsistent with

the boundary conditions of the PSU(2, 2|4) gauge parameters. Instead, one can use these

ten gauge transformations to gauge-fix 5 components of Aa and 5 components of A
a

to

zero. The choice of which five components of Aa and A
a

are gauge-fixed will be correlated

with the bosonic ghosts (Zα, Z
bα
) in such a manner that the resulting BRST operator

is nilpotent. Using an AdS5 × S5 adaptation of the “extended pure spinor formalism”
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of Aisaka and Kazama [14], this BRST operator will then be shown to have the same

cohomology as the original AdS5 × S5 BRST operator of (2.13).

To determine which components of Aa should be gauge-fixed, note that (γa)αβZαZβ

is a null vector which decomposes under SO(4, 1) × SO(5) into

ΦI = (γI)αβZαZβ, ΨĨ = (γĨ)αβZαZβ (4.19)

for I = 0 to 4 and Ĩ = 5 to 9. Furthermore, if ΦI is zero for I = 0 to 4, then ΨĨ is also zero

for Ĩ = 5 to 9. This can be seen from the fact that a pure spinor contains 11 independent

components and therefore satisfies 5 independent constraints. So if ΦI = 0 for I = 0 to 4,

Zα will be a pure spinor, which implies that ΨĨ = 0 for Ĩ = 5 to 9. Since ΦI = 0 implies

ΨĨ = 0, there exists an invertible matrix MJ
Ĩ
(Z) such that

ΨĨ(Z) = MJ
Ĩ
(Z) ΦJ(Z). (4.20)

It will be convenient to define the matrix N I
a (Z) such that

γaαβZαZβ = N I
a (Z)ΦI(Z) (4.21)

where N I
a = δI

a for a = 0 to 4, and N I
a = M I

a for a = 5 to 9. Since ηab(ZγaZ)(ZγbZ) = 0

and since the ΦI ’s are independent, N I
a satisfies the identity

ηabN I
aN J

b = 0. (4.22)

Similarly, one can define the matrix N I
a(Z) such that

γ
abαbβ

Z
bα
Z

bβ
= N I

a(Z)ΦI(Z), ηabN I
aN

J
b = 0. (4.23)

One now uses N I
a (Z) and N I

a(Z) to choose the gauge-fixing conditions

N I
a (Z)Aa = 0, N I

a(Z)A
a

= 0 (4.24)

for I = 0 to 4. With this gauge-fixing, the G/G model of (4.11) becomes

S =

∫
d2z

[
ηÃB̃(J Ã − AÃ)(J

B̃ − A
B̃

) + f IN I
a Aa + fIN I

aA
a

+ fαA
α

+ f bαAbα (4.25)

−Yα(∇Zα−ηαbα(Zγa)bαA
a−caγαβ

a η
β bβ

A
bβ
)+Y bα(∇Z

bα
+ηαbα(Zγa)αAa+caγbαbβ

a η
β bβ

Aβ)

−bIN I
a(∇ca + (Zγa)bαA

bα
+ (Zγa)αA

α
) − bIN I

a (∇ca + (Zγa)αAα + (Zγa)bαAbα)

]

and the BRST operator is

Q =

∫
dz[Zαfα + bIR

IJΦJ + ca(N I
afI + Ka)] (4.26)

+

∫
dz[Z

bα
f bα + bJRIJΦI + ca(N I

a f I + Ka)]
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where (fI , f I , fα, f bα) are Lagrange multipliers which impose the gauge-fixing conditions,

(ca, Zα, Z
bα
) and (bI , bI , Yα, Y bα) are the Faddeev-Popov ghosts and antighosts coming from

the gauge-fixing of (4.16) and (4.24), and

RIJ ≡ ηabN I
aN J

b , Ka ≡ ηαbα(γaY )αZ
bα
, Ka ≡ ηαbα(γaY )bαZα. (4.27)

After integrating out the worldsheet gauge fields and Lagrange multipliers which satisfy

auxiliary equations of motion, (4.25) reduces to

S =

∫
d2z

[
JaN I

a R−1
IJ N

J
b J

b
+ ηαbαJ

α
J bα − Yα(∇Zα + · · · ) + Y bα(∇Z

bα
+ · · · ) (4.28)

−bIN I
a(∇ca + · · · )+bIN I

a (∇ca+· · · )−η[ab][cd]

(
1

2
Y γabZ+bIN I

acb

)(
1

2
Y γcdZ+bJN J

c cd

)]

with the BRST operator

Q =

∫
dz[ηαbαZαJ bα + bIR

IJΦJ + caN I
aR

−1
JI N J

b (Jb − Kb) + caKa] (4.29)

+

∫
dz[ηαbαZ

bα
J

α
+ bIR

JIΦJ + caN I
a R−1

IJ N
J
b (J

b − K
b
) + caKa]

where

∇Zα = ∂Zα +
1

2
J

[ab]
(γabZ)α, ∇Z

bα
= ∂Z

bα
+

1

2
J [ab](γabZ)bα, (4.30)

∇ca = ∂ca + J
[ab]

cb, ∇ca = ∂ca + J [ab]cb,

and R−1
IJ is the inverse matrix to RIJ ≡ ηabN I

aN J
b satisfying R−1

IJ RJK = δK
I . Note that the

last term of (4.28) comes from integrating out A[ab] and A
[ab]

which converts the covariant

derivatives in (4.17) into the covariant derivatives of (4.30).

As shown in [14] using “homological perturbation” theory, the BRST operator of (4.29)

is equivalent to the BRST operator Q =
∫

dzηαbαλαJ bα +
∫

dzηαbαλ̂bαJ
α

where the terms∫
dzbIR

IJΦJ and
∫

dzbIR
JIΦJ in (4.29) have been used to strongly impose the constraints

ΦI = ΦI = 0 and to gauge ca = 0. In the presence of the constraints ΦI = ΦI = 0, the

ghosts Zα and Z
bα

reduce to pure spinors which will be called λα and λ̂bα. Furthermore,

ΦI = ΦI = 0 implies that (λγa)αN I
a = (λ̂γa)bαN

I
a = 0, and that

N I
a R−1

IJ N
J
b =

(λγa)αηαbα(λ̂γb)bα

2(ηλλ̂)
(4.31)

where the normalization of (4.31) is fixed by ηab(N I
a R−1

IJ N
J
b ) = R−1

IJ RJI = 5. Finally, when

ca = 0 and ΦI = ΦI = 0, it is straightforward to check that the . . . terms in (4.28) are zero

and that (4.28) coincides with (4.1).

So it has been shown that the topological AdS5×S5 action of (4.1) and BRST operator

of (4.3) can be obtained from the G/G principal chiral model of (4.11) by choosing the gauge

Abα = A
α

= N I
a (Z)Aa = N I

a(Z)A
a

= 0, (4.32)
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where the tensors N I
a (Z) and N I

a(Z) are constructed from the bosonic Faddeev-Popov

ghosts. In the next subsection, it will be argued that this topological model describes

the zero-radius limit of the AdS5 × S5 superstring which is dual to free N = 4 d = 4

super-Yang-Mills theory.

4.3 Physical states

If the topological model of (4.1) is to describe the zero radius limit of the AdS5 × S5

superstring, physical states in the BRST cohomology of this model should correspond to

gauge-invariant super-Yang-Mills operators at zero ‘t Hooft coupling. Naively, the G/G

model has no physical states since one could use the local PSU(2, 2|4) gauge invariance

of (4.12) to gauge G = 1. In this gauge, there are no propagating ghosts and the equations

of motion for the worldsheet gauge field are simply AÃ = A
Ã

= 0.

However, because of the non-compact generators in PSU(2, 2|4), there are subtleties

in choosing the gauge G = 1. Suppose one parameterizes the PSU(2, 2|4) matrix G as

G = exp(xmPm + θj
µqµ

j + θ
µ̇
j qj

µ̇) exp(−yD + φjkR
jk + tmnMmn) exp(hmKm + ξµ

j sj
µ + ξ

j
µ̇sµ̇

j )

(4.33)

where (Pm, qµ
j , qj

µ̇) are the N = 4 d = 4 translation and supersymmetry generators for m =

0 to 3, j = 1 to 4 and (µ, µ̇) = 1 to 2, (D,Rjk,Mmn) are the dilatation, SO(6) R-symmetry,

and SO(3, 1) Lorentz generators, and (Km, sj
µ, sµ̇

j ) are the conformal and superconformal

generators. With this parameterization of G, the global PSU(2, 2|4) isometries δG =

ΣG transform the variables (xm, θj
µ, θ

µ̇
j ) into themselves in the standard N = 4 d = 4

superconformal manner. Furthermore, using the relations

Kme−yD = e−yD(e−yKm), sj
µe−yD = e−yD(e−

1
2
ysj

µ), sµ̇
j e−yD = e−yD(e−

1
2
ysµ̇

j ), (4.34)

one finds that in the limit y → ∞, the variables (hm, ξµ
j , ξ

j
µ̇) are invariant under the global

PSU(2, 2|4) transformations. So it is natural to identify (xm, θj
µ, θ

µ̇
j ) as parameterizing the

boundary of AdS5 × S5 in the limit where y → ∞.

Under the local PSU(2, 2|4) gauge transformations δG = GΩ of (4.12), one could

naively gauge-fix to zero all the variables in (4.33). However, using the relations

e−yDPm = (e−yPm)e−yD, e−yDqµ
j = (e−

1
2
yqµ

j )e−yD, e−yDqj
µ̇ = (e−

1
2
yqj

µ̇)e−yD, (4.35)

one finds that in the limit where y → ∞, the variables (xm, θj
µ, θ

µ̇
j ) are invariant under

these gauge transformations. So assuming that the gauge parameters in Ω of (4.12) do not

blow up when y → ∞, the boundary of AdS5×S5 is gauge-invariant and cannot be gauged

away. The G/G principal chiral model could therefore have physical states which depend

non-trivially on the AdS5 × S5 boundary variables (xm, θj
µ, θ

µ̇

j ) when y → ∞.2

2 Using the gauge-fixing to the fermionic coset, the x
m variables were gauged to zero which explains

why it was difficult to construct physical vertex operators in terms of the fermionic coset variables. In [11],

it was conjectured that the non-trivial physical states could emerge after including a kinetic term for the

worldsheet gauge field. However, this conjecture appears to be incorrect since the kinetic term goes to zero

in the infrared limit of the sigma model. I would like to thank A. Polyakov for correcting this point and for

suggesting that the topological action should be perturbed by an appropriate radius-dependent operator.
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In fact, it is easy to verify that in the gauge of (4.32) where G takes values in the

Metsaev-Tseytlin coset g ∈ PSU(2,2|4)
SO(4,1)×SO(5) , there are such physical states in the BRST co-

homology. Using the topological action of (4.1), the BRST operator of (4.3) transforms

Qg = g(λαTα + λ̂bαTbα) (4.36)

in precisely the same manner as in the AdS5×S5 formalism of section 2. So the supergravity

vertex operator V = λαλ̂bαAαbα(x, θ, θ̂) is in the BRST cohomology of the topological model

when Aαbα satisfies the equations of motion and gauge invariances of (2.31) and (2.33).

These supergravity vertex operators depend only on the zero modes of the worldsheet

variables and correspond to the half-BPS Yang-Mills operators. Vertex operators corre-

sponding to non-BPS Yang-Mills operators are expected to depend on non-zero modes of

the worldsheet variables and will be more difficult to explicitly construct. Nevertheless, it

will be conjectureed that these non-BPS vertex operators can be obtained from BPS ver-

tex operators by transforming the worldsheet variables described by the Metsaev-Tseytlin

coset g ∈ PSU(2,2|4)
SO(4,1)×SO(5) as

δg(σ) = Σ(σ)g(σ) (4.37)

where 0 ≤ σ < 2π is the closed string parameter and Σ(σ) is a PSU(2, 2|4) transformation

which is allowed to depend on σ. Although an explicit construction of these non-BPS

vertex operators is unknown, they should be defined such that they are ghost-number 2

elements in the BRST cohomology as usual in the pure spinor formalism.

Since (4.37) acts by left multiplication and the BRST transformation of (4.36) acts by

right multiplication, BRST transformations commute with (4.37). So QV (g) = 0 implies

that QV (g + δg) = 0 where δg is defined in (4.37). When Σ is independent of σ, (4.37) is

a global PSU(2, 2|4) transformation which takes half-BPS vertex operators into half-BPS

vertex operators. But when Σ depends on σ, (4.37) can take half-BPS vertex operators

into non-BPS vertex operators which depend on non-zero modes of the worldsheet vari-

ables. Although (4.37) does not leave invariant the topological action of (4.1) when ∂σΣ

is nonzero, the change of the topological action is BRST-trivial and can be expressed as

δS =
∫

d2zQ[Ψ(g + δg)−Ψ(g)] where Ψ is defined in (4.9). So the transformation of (4.37)

takes physical states into physical states.

To see an example where (4.37) transforms a physical half-BPS vertex operator into a

physical non-BPS vertex operator, consider the half-BPS vertex operator |0〉J correspond-

ing to the long gauge-invariant super-Yang-Mills operator

Tr(ZJ) (4.38)

with large R-charge J where Z is the scalar at xm = 0 with R-charge +1 with respect to a

U(1) direction of SO(6). To be explicit, choose Z = φ12 where φjk are the six Yang-Mills

scalars and J is the charge with respect to the U(1) generator 1
2(R1

1 + R2
2 −R3

3 −R4
4). The

operator of (4.38) is invariant under all PSU(2, 2|4) transformations of (4.37) except for

the four translations Pm, the four R-symmetry generators (R1
3, R

2
3, R

1
4, R

2
4), and the eight

supersymmetry generators (qµ
3 , qµ

4 , q1
µ̇, q2

µ̇). Under these eight bosonic and eight fermionic
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transformations, the operator of (4.38) transforms in the same manner as in a Ramond-

Ramond plane-wave background when acted on with the eight bosonic and eight fermionic

light-cone oscillators [15].

To be more explicit, suppose that (Σn)kj transforms g(σ) as δg(σ) = einσRk
j g(σ).

Then (Σn)13|0〉J is the vertex operator corresponding to the long gauge-invariant Yang-

Mills operator
J∑

m=1

Tr(Zm φ32Z
J−m)e2πin m

J . (4.39)

As in a plane-wave background, this operator vanishes by cyclicity of the trace so one

needs at least two σ-dependent transformations to construct a physical states which satisfies

L0 −L0 = 0. For example, (Σ−n)14(Σn)13|0〉J is the non-BPS vertex operator corresponding

to the long gauge-invariant Yang-Mills operator

J∑

m=1

Tr(φ42Z
m φ32Z

J−m)e2πin m
J . (4.40)

The spectrum of these non-BPS operators is easily computed using the PSU(2, 2|4)
algebra. For example, [D − J,R1

3] = R1
3 and [D − J,R1

4] = R1
4 where D is the dilatation

generator. So the state (Σ−n)14(Σn)13|0〉J has eigenvalue D−J = 2 which is independent of

n. This agrees with the expected result at zero ‘t Hooft coupling since the large R-charge

formula for the eigenvalue of the nth oscillator mode is

(D − J)n =

√
1 +

4πgsN

J
n2 (4.41)

which is independent of n when gsN = 0.

4.4 Scattering amplitudes and open-closed duality

If the topological action Stop of (4.1) describes the zero-radius limit of the AdS5×S5 super-

string, the AdS5×S5 superstring at infinitesimal radius r should be described by the action

Sr = Stop + r2SAdS (4.42)

where SAdS is the vertex operator for the radius modulus and is also the original AdS5×S5

action of (2.11). Since Stop and SAdS are both invariant under the BRST transformation

generated by (2.13), (4.42) is also BRST invariant.3 Note that one could also consider

the action Sr = tStop + r2SAdS where t is a constant, but since Stop is BRST-trivial, the

theory must be independent of the value of t.

The Maldacena conjecture predicts that perturbative superstring scattering amplitudes

computed in the background of (4.42) should coincide with perturbative correlation func-

tions of gauge-invariant super-Yang-Mills operators at small ’t Hooft coupling. Although it

is not yet known how to compute topological string amplitudes in the background of (4.42),

3Using the previous proposal of Stop based on the fermionic coset, such a perturbation of Stop would

not be allowed since the topological and AdS5 × S
5 BRST operators were different.
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a handwaving argument will be sketched based on open-closed topological duality that

such amplitudes should agree with the analogous super-Yang-Mills computations. If this

handwaving argument could be made rigorous, it would provide a proof of the Maldacena

conjecture at small ’t Hooft coupling.

The handwaving argument is closely related to ideas in [16] and [17, 18] which describe

open-closed topological duality in the context of the Kontsevitch model and Chern-Simons

theory. The action Stop of (4.1) describes a closed topological string theory, and one can

define an open topological string theory by placing M D3 branes at the boundary of AdS5.

As usual, the D3 brane boundary conditions are Dirichlet for the (x4, . . . , x9) variables,

Neumann for the (x0, . . . , x3) variables, and

λ̂bα = (γ0123)
bα
αλα, ŵbα = (γ0123)

α
bαwα, (4.43)

for the pure spinor variables. Furthermore, the fermionic boundary conditions imply that

J bα = (γ0123)
bα
αJ

α
, so the BRST operator satisfies QL = QR on the boundary.

As discussed at the end of subsection (3.3), (4.43) implies that (ηλλ̂) = λγ4λ = 0,

so one needs to introduce non-minimal variables on the boundary. These non-minimal

variables turn the zero mode measure factor into the same measure factor as in a flat

background which is the d = 4 dimensional reduction of

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1. (4.44)

One might be worried that the term

(λγa)αηαbα(λ̂γb)bα

2(ηλλ̂)
JaJ

b
(4.45)

in the action of (4.1) becomes singular on the boundary where (ηλλ̂) = 0, but the numerator

(λγa)αηαbα(λ̂γb)bα also vanishes on the boundary where it is proportional to λγaγ4γbλ = 0.

The first step in the open-closed duality argument is that the only physical open

string states on the M D3 branes are massless U(M) N = 4 super-Yang-Mills states. It

is clear that these super-Yang-Mills states are in the spectrum since the vertex operator

V = λαAα(x, θ) is in the open string BRST cohomology when Aα(x, θ) satisfies the d =

4 dimensional reduction of the d = 10 linearized super-Yang-Mills equations of motion.

However, the absence of other states in the open string BRST cohomology remains to be

proven. Nevertheless, it is reasonable that there are no other physical open string states

since the D3 branes on the AdS5 boundary preserve PSU(2, 2|4) invariance, so any other

such states would have to preserve N = 4 d = 4 superconformal invariance and transform

in the adjoint representation of U(M).

The next step in the argument is that the open string field theory action given by

S =
1

g2
〈V QV +

2

3
V V V 〉 (4.46)

reproduces the N = 4 d = 4 super-Yang-Mills field theory action where V is the off-shell

open string field, g is the square-root of the closed string coupling constant gs, and the
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zero-mode measure factor in (4.46) is the d = 4 dimensional reduction of (4.44). This

step is reasonable since, as in the Chern-Simons topological string [33], one expects the

Feynman diagrams of the open topological string to reduce to the Feynman diagrams of

the massless field theory. And as shown in [30, 31], the d = 10 super-Yang-Mills field

theory action (or its dimensional reduction) can be expressed as S = 1
g2 〈V QV + 2

3V V V 〉
where V = λαAα(x, θ), Aα(x, θ) is an off-shell d = 10 spinor superfield, Q = λαDα, Dα is

the d = 10 supersymmetric derivative, and 〈 〉 is the zero mode measure factor of (4.44).

Furthermore, it will be assumed that as in the Chern-Simons topological string [33], closed

string states decouple from open string states and do not contribute to open topological

string scattering amplitudes.

So when r = 0 in (4.42), it has been argued that the open string field theory for M D3

branes at the boundary describes U(M) super-Yang-Mills theory with coupling constant

g =
√

gs. The final step in the argument is that adding the r2SAdS perturbation to Stop

in (4.42) affects the open string field theory by shifting the ’t Hooft coupling constant.

This step has an analog in the open-closed duality of [16] where parameters of the closed

string background of topological gravity were shown to affect the open string field theory

by shifting parameters in the Kontsevitch matrix model.

The justification for this step is that insertion of a closed string vertex operator at

a puncture in an open topological string amplitude can be replaced by expanding the

puncture into a hole and inserting an appropriate D-brane boundary state [16, 34]. For an

arbitrary closed string vertex operator, the corresponding D-brane boundary state may be

difficult to construct. But for the closed string vertex operator SAdS which is PSU(2, 2|4)
invariant, it seems reasonable to assume that the corresponding D-brane boundary state is

proportional to a D3 brane at the AdS5 boundary. Note that the proportionality constant

f(r) must go to zero when r → 0 in order to be consistent with the assumed decoupling of

closed string states from open string states in the topological string. So inserting the closed

string vertex operator SAdS at a puncture in an open topological string amplitude should be

equivalent to expanding the puncture to a D3 brane hole and multiplying by a factor of f(r).

Perturbing the background from Stop → Stop + r2SAdS is equivalent to inserting an

exponential set of closed string vertex operators, and for each open string diagram with h

holes and p punctures, the scattering amplitude is proportional to

(g2M)h(r2)p (4.47)

where (g2M)h comes from the usual (λ′tHooft)
h factor in the ’t Hooft expansion. Replacing

the punctures by D-brane holes and including the proportionality constant of f(r), the open

string scattering amplitude with H holes is proportional to

∑

h+p=H

(h + p)!

h!p!
(g2M)h(r2f(r))p = (g2M + r2f(r))H (4.48)

where the factor of (h+p)!
h!p! comes from the different ways to split the H holes into h holes

and p punctures.

So in the background of (4.42), it has been argued that the open string field theory

for M D3 branes on the AdS5 boundary describes super-Yang-Mills theory where the ‘t
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Hooft coupling is shifted from g2M to g2M + r2f(r). Note that if one could show that

f(r) were equal to r2, this argument would imply that the ‘t Hooft coupling is equal to r4

when M = 0. So the relation λ′tHooft = r4 would be valid both at small and large radius.

5 Conclusions and discussion

In the first half of this paper, it was shown that (ηλλ̂) is in the BRST cohomology in an

AdS5 × S5 background, which implies that the left and right-moving pure spinor ghosts

can be treated as complex conjugate variables. This eliminates the need for non-minimal

variables and simplifies the zero-mode measure factor and b ghost.

In the second half of this paper, a BRST-trivial version of the AdS5 × S5 action was

constructed by gauge-fixing a G/G principal chiral model where G = PSU(2, 2|4). This

topological action was argued to describe the zero radius limit which is dual to free super-

Yang-Mills, and perturbing the topological action by the vertex operator for the radius

modulus was conjectured to describe super-Yang-Mills at small ’t Hooft coupling.

One possible method for proving this conjecture uses open-closed topological string du-

ality along the lines proposed in the previous subsection. However, a more direct method

would be to compute the topological closed string amplitudes and compare with the per-

turbative Feynman diagrams of the super-Yang-Mills field theory. In [11], a connection

was found between networks of Wilson lines constructed from worldsheet gauge fields in

the G/G model and the propagators and vertices of N = 4 super-Yang-Mills Feynman

diagrams. It would be very exciting if amplitude computations in the topological model

could be related to counting these Wilson line networks in the G/G model.

Although it is well-understood how to compute scattering amplitudes with conventional

topological string theories, the topological model of (4.1) has some new features which have

not yet been studied. Unlike the usual topological strings where the complex structure of

the target spacetime is fixed, the complex structure of the target spacetime in (4.1) is

determined dynamically by the pure spinors (λα, λ̂bα) which choose a U(5) subgroup of the

(Wick-rotated) SO(10) Lorentz group. This can be seen from the kinetic term for the x’s in

the topological action which, to quadratic order, is
∫

d2z(2ηλλ̂)−1ηαbα(λγa)α(λ̂γb)bα∂xa∂xb.

So classical instanton solutions satisfy

(λγa)α∂xa = 0, (λ̂γa)bα∂xa = 0, (5.1)

where (λγa)α determines which five complex components of ∂xa must vanish.

Another new feature of the topological sigma model of (4.1) is that the ghost-number

anomaly does not fix the number of unintegrated versus integrated vertex operators. Since

vertex operators can be multiplied by inverse powers of (ηλλ̂) without spoiling BRST

invariance, one can construct unintegrated vertex operators of ghost-number zero such

as V = (ηλλ̂)−1λαλ̂bαAαbα(x, θ, θ̂). It is unclear if the topological amplitude prescription

should involve both unintegrated and integrated vertex operators, or only unintegrated

vertex operators. Similarly, it is unclear if the genus g topological amplitude prescription

requires integration over the moduli of genus g Riemann surfaces.
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In addition to describing the zero radius AdS5 × S5 limit, the topological model

of (4.1) can also be interpreted as a tensionless string in which all massless and massive

background fields are treated on equal footing. Changing the target-space metric in the

topological action is a BRST-trivial operation so, as proposed by Witten, the topological

model describes string theory in an “unbroken phase” in which general covariance does

not require an explicit metric [19, 21].

By giving background values to physical moduli, one can perturb the topological

model into non-topological string theories which describe backgrounds that are asymptot-

ically AdS5 × S5 but are not necessarily PSU(2, 2|4) invariant. For example, perturbing

with the vertex operator for the radius modulus deforms the topological action into the

PSU(2, 2|4)-invariant AdS5 × S5 action of (2.11), but perturbing with other physical

moduli will lead to superstring backgrounds which are asymptotically AdS5 × S5 but

which are not PSU(2, 2|4) invariant.

In some sense, these asymptotically AdS5 × S5 backgrounds are more natural back-

grounds for the pure spinor formalism than asymptotically flat backgrounds. In asymptot-

ically AdS5 × S5 backgrounds, the worldsheet action can always be constructed from the

Metsaev-Tseytlin coset g ∈ PSU(2,2|4)
SO(4,1)×SO(5) even though the action is not necessarily invari-

ant under the global PSU(2, 2|4) isometries δg = Σg. Furthermore, the BRST operator in

these backgrounds always acts geometrically as Qg = g(λαTα + λ̂bαTbα) and there is no need

to introduce non-minimal variables. And in the limit where the radius goes to zero, the

topological AdS5 × S5 pure spinor action and BRST operator can be derived by gauge-

fixing a G/G principal chiral model. This contrasts with the pure spinor formalism in a

flat background which has not yet been derived in a simple manner from gauge fixing.
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